{"title":"Yau and Souplet-Zhang type gradient estimates on Riemannian manifolds with boundary under Dirichlet boundary condition","authors":"Keita Kunikawa, Y. Sakurai","doi":"10.1090/proc/15768","DOIUrl":null,"url":null,"abstract":"In this paper, on Riemannian manifolds with boundary, we establish a Yau type gradient estimate and Liouville theorem for harmonic functions under Dirichlet boundary condition. Under a similar setting, we also formulate a Souplet-Zhang type gradient estimate and Liouville theorem for ancient solutions to the heat equation.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper, on Riemannian manifolds with boundary, we establish a Yau type gradient estimate and Liouville theorem for harmonic functions under Dirichlet boundary condition. Under a similar setting, we also formulate a Souplet-Zhang type gradient estimate and Liouville theorem for ancient solutions to the heat equation.