Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case A n

IF 0.8 4区 数学 Q2 MATHEMATICS
P. Graczyk, P. Sawyer
{"title":"Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case A n","authors":"P. Graczyk, P. Sawyer","doi":"10.5802/CRMATH.188","DOIUrl":null,"url":null,"abstract":"In this article, we consider the radial Dunkl geometric case k = 1 corresponding to flat Riemannian symmetric spaces in the complex case and we prove exact estimates for the positive valued Dunkl kernel and for the radial heat kernel. Dans cet article, nous considerons le cas geometrique radial de Dunkl k = 1 correspondant aux espaces symetriques riemanniens plats dans le cas complexe et nous prouvons des estimations exactes pour le noyau de Dunkla valeur positive et pour le noyau de chaleur radial.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"1 1","pages":"427-437"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.188","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

In this article, we consider the radial Dunkl geometric case k = 1 corresponding to flat Riemannian symmetric spaces in the complex case and we prove exact estimates for the positive valued Dunkl kernel and for the radial heat kernel. Dans cet article, nous considerons le cas geometrique radial de Dunkl k = 1 correspondant aux espaces symetriques riemanniens plats dans le cas complexe et nous prouvons des estimations exactes pour le noyau de Dunkla valeur positive et pour le noyau de chaleur radial.
复杂情况下径向Dunkl和热核的尖锐估计
在这篇文章中,我们考虑了径向Dunkl几何情况k = 1对应于平面黎曼对称空间的复杂情况,并给出了正值Dunkl核和径向热核的精确估计。在本文中,我们考虑了Dunkl k = 1在复情况下对应于黎曼对称平面空间的径向几何情况,并证明了Dunkl核和径向热核的精确估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信