Adaptive optimisation driven deep belief networks for lung cancer detection and severity level classification

M. Shanid, A. Anitha
{"title":"Adaptive optimisation driven deep belief networks for lung cancer detection and severity level classification","authors":"M. Shanid, A. Anitha","doi":"10.1504/ijbic.2021.118101","DOIUrl":null,"url":null,"abstract":"Computed tomography (CT) for lung cancer detection is trending research in determining the lung cancer on its earlier stages. However, accurate lung cancer detection with severity levels is a major...","PeriodicalId":13636,"journal":{"name":"Int. J. Bio Inspired Comput.","volume":"33 1","pages":"114-121"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bio Inspired Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbic.2021.118101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Computed tomography (CT) for lung cancer detection is trending research in determining the lung cancer on its earlier stages. However, accurate lung cancer detection with severity levels is a major...
基于自适应优化的深度信念网络用于肺癌检测和严重程度分类
计算机断层扫描(CT)是肺癌早期诊断的研究热点。然而,准确的肺癌检测和严重程度是…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信