Optimal triple modular redundancy embeddings in the hypercube

L. Brown, Jie Wu
{"title":"Optimal triple modular redundancy embeddings in the hypercube","authors":"L. Brown, Jie Wu","doi":"10.1109/MPCS.1994.367027","DOIUrl":null,"url":null,"abstract":"To achieve reliability without sacrificing performance, the tasks of a computation are redundantly assigned to the processors of a hypercube multiprocessor. The computation is represented by a task interaction graph in which nodes represent tasks, and edge weights represent the amount of communication between tasks. To provide fault tolerance, each node in the graph is replaced by three nodes that act together as a triple modular redundancy (TMR) unit. We develop a formula to calculate the number of TMR units that can be supported in an n-dimensional hypercube, and a formula to calculate the distance between true TMR units. Then we give algorithms for TMR embeddings of weighted 1-level k-ary trees and unweighted rings in a hypercube. These algorithms minimize expansion, and are optimal in that they minimize dilation for a given expansion.<<ETX>>","PeriodicalId":64175,"journal":{"name":"专用汽车","volume":"5 1","pages":"600-610"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"专用汽车","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/MPCS.1994.367027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve reliability without sacrificing performance, the tasks of a computation are redundantly assigned to the processors of a hypercube multiprocessor. The computation is represented by a task interaction graph in which nodes represent tasks, and edge weights represent the amount of communication between tasks. To provide fault tolerance, each node in the graph is replaced by three nodes that act together as a triple modular redundancy (TMR) unit. We develop a formula to calculate the number of TMR units that can be supported in an n-dimensional hypercube, and a formula to calculate the distance between true TMR units. Then we give algorithms for TMR embeddings of weighted 1-level k-ary trees and unweighted rings in a hypercube. These algorithms minimize expansion, and are optimal in that they minimize dilation for a given expansion.<>
超立方体中最优的三模冗余嵌入
为了在不牺牲性能的情况下实现可靠性,计算任务被冗余地分配给超立方体多处理器的处理器。计算由任务交互图表示,其中节点表示任务,边权重表示任务之间的通信量。为了提供容错性,图中的每个节点被三个节点替换,这三个节点一起作为三重模块冗余(TMR)单元。我们开发了一个公式来计算n维超立方体中可以支持的TMR单元的数量,以及一个公式来计算真正的TMR单元之间的距离。然后给出了超立方体中加权1级k元树和未加权环的TMR嵌入算法。这些算法使扩展最小化,并且是最优的,因为它们对给定的扩展最小化了扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8000
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信