D. Manatakis, Michael G. Nennes, I. Bakas, E. Manolakos
{"title":"Simulation-driven emulation of collaborative algorithms to assess their requirements for a large-scale WSN implementation","authors":"D. Manatakis, Michael G. Nennes, I. Bakas, E. Manolakos","doi":"10.1109/ICASSP.2014.6855232","DOIUrl":null,"url":null,"abstract":"Assessing how the performance of a decentralized wireless sensor network (WSN) algorithm's implementation scales, in terms of communication and energy costs, as the network size increases is an essential requirement before its field deployment. Simulations are commonly used for this purpose, especially for large-scale environmental monitoring applications. However, it is difficult to evaluate energy consumption, processing and memory requirements before the algorithm is really ported to a real WSN platform. We propose a method for emulating the operation of collaborative algorithms in large-scale WSNs by re-using a small number of available real sensor nodes. We demonstrate the potential of the proposed simulation-driven WSN emulation approach by using it to estimate how communication and energy costs scale with the network's size when implementing a collaborative algorithm we developed in [12] for tracking the spatiotemporal evolution of a progressing environmental hazard.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"61 1","pages":"8360-8364"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6855232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Assessing how the performance of a decentralized wireless sensor network (WSN) algorithm's implementation scales, in terms of communication and energy costs, as the network size increases is an essential requirement before its field deployment. Simulations are commonly used for this purpose, especially for large-scale environmental monitoring applications. However, it is difficult to evaluate energy consumption, processing and memory requirements before the algorithm is really ported to a real WSN platform. We propose a method for emulating the operation of collaborative algorithms in large-scale WSNs by re-using a small number of available real sensor nodes. We demonstrate the potential of the proposed simulation-driven WSN emulation approach by using it to estimate how communication and energy costs scale with the network's size when implementing a collaborative algorithm we developed in [12] for tracking the spatiotemporal evolution of a progressing environmental hazard.