Globally Exponential Synchronization and Parameter Regulation of Chaotic Neural Networks with Time-Varying Delays via Adaptive Control

Zhongsheng Wang, Dan Xiang, Nin Yan
{"title":"Globally Exponential Synchronization and Parameter Regulation of Chaotic Neural Networks with Time-Varying Delays via Adaptive Control","authors":"Zhongsheng Wang, Dan Xiang, Nin Yan","doi":"10.1109/ICNC.2008.32","DOIUrl":null,"url":null,"abstract":"The paper aims to present a globally exponential synchronization and parameter regulation scheme for a class of time-varying neural networks, which covers the Hopfield neural networks and cellular neural networks. By combining the adaptive control method and the Razumikhin-type theorem, a delay-independent and decentralized linear-feedback control with appropriate updated law is designed to achieve the globally exponential synchronization. The regulating law of parameters can be directly constructed. Hopfield neural networks with time-varying delays is given to show the effectiveness of the presented synchronization scheme.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"24 1","pages":"409-413"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper aims to present a globally exponential synchronization and parameter regulation scheme for a class of time-varying neural networks, which covers the Hopfield neural networks and cellular neural networks. By combining the adaptive control method and the Razumikhin-type theorem, a delay-independent and decentralized linear-feedback control with appropriate updated law is designed to achieve the globally exponential synchronization. The regulating law of parameters can be directly constructed. Hopfield neural networks with time-varying delays is given to show the effectiveness of the presented synchronization scheme.
基于自适应控制的时变时滞混沌神经网络全局指数同步与参数调节
本文提出了一类时变神经网络的全局指数同步和参数调节方案,该方案涵盖了Hopfield神经网络和细胞神经网络。将自适应控制方法与razumikhin型定理相结合,设计了一种具有适当更新律的时滞无关的分散线性反馈控制,以实现全局指数同步。可以直接构造参数的调节律。以具有时变延迟的Hopfield神经网络为例,验证了所提同步方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信