Kredi Temerrüt Riskini Tahmin Etmede Makine Öğrenme Algoritmalarının Karşılaştırılması

Toprak Enes Tütüncü, Sevda Gürsakal
{"title":"Kredi Temerrüt Riskini Tahmin Etmede Makine Öğrenme Algoritmalarının Karşılaştırılması","authors":"Toprak Enes Tütüncü, Sevda Gürsakal","doi":"10.31590/ejosat.1171611","DOIUrl":null,"url":null,"abstract":"Bankalar ve çeşitli finans kuruluşları tarafından karşılanan kredilerin, müşteri tarafından geri ödenememesi hem kredi veren kuruluşun sermaye kaybını hem de genel ekonomide oluşabilecek çeşitli risk faktörlerini beraberinde getirmektedir. Bu süreçte, oldukça kritik öneme sahip olan kredi riskinin doğru yönetilebilmesi ve uluslararası finans istikrarının sağlanması için Basel Komitesi ve BDDK (Bankacılık Düzenleme ve Denetleme Kurumu) gibi finans denetimi kuruluşları, kredi veren kurumların kredi verme karar aşamasında çeşitli regülasyon politikaları belirlemektedir. Ayrıca, kredi veren kurumlar analitik risk birimleri aracılığıyla kredi değerlendirme modelleri geliştirerek, müşterilere ait kredi risk skorunu hesaplamaktadır. \nBu çalışmada makine öğrenmesi yöntemiyle kredi skorlama sistemlerinde kullanılabilecek en başarılı tahmini gerçekleştiren algoritmanın belirlenmesi amaçlanmıştır. Bu kapsamda, Gradyan Artırma, Yapay Sinir Ağları, Lojistik Regresyon, Rassal Orman, Karar Ağacı, Destek Vektör Makineleri, K-En Yakın Komşu ve WOE dönüşümleriyle Lojistik Regresyon algoritmaları için modeller kurulmuş ve temerrüde düşen ve temerrüde düşmeyen müşteriler için en iyi sınıflandırma performansı gösteren Gradyan Artırma algoritması olmuştur.","PeriodicalId":12068,"journal":{"name":"European Journal of Science and Technology","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31590/ejosat.1171611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bankalar ve çeşitli finans kuruluşları tarafından karşılanan kredilerin, müşteri tarafından geri ödenememesi hem kredi veren kuruluşun sermaye kaybını hem de genel ekonomide oluşabilecek çeşitli risk faktörlerini beraberinde getirmektedir. Bu süreçte, oldukça kritik öneme sahip olan kredi riskinin doğru yönetilebilmesi ve uluslararası finans istikrarının sağlanması için Basel Komitesi ve BDDK (Bankacılık Düzenleme ve Denetleme Kurumu) gibi finans denetimi kuruluşları, kredi veren kurumların kredi verme karar aşamasında çeşitli regülasyon politikaları belirlemektedir. Ayrıca, kredi veren kurumlar analitik risk birimleri aracılığıyla kredi değerlendirme modelleri geliştirerek, müşterilere ait kredi risk skorunu hesaplamaktadır. Bu çalışmada makine öğrenmesi yöntemiyle kredi skorlama sistemlerinde kullanılabilecek en başarılı tahmini gerçekleştiren algoritmanın belirlenmesi amaçlanmıştır. Bu kapsamda, Gradyan Artırma, Yapay Sinir Ağları, Lojistik Regresyon, Rassal Orman, Karar Ağacı, Destek Vektör Makineleri, K-En Yakın Komşu ve WOE dönüşümleriyle Lojistik Regresyon algoritmaları için modeller kurulmuş ve temerrüde düşen ve temerrüde düşmeyen müşteriler için en iyi sınıflandırma performansı gösteren Gradyan Artırma algoritması olmuştur.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信