{"title":"Non-equilibrium evolution of Bose-Einstein condensate deformation in temporally controlled weak disorder","authors":"Milan Radonji'c, A. Pelster","doi":"10.21468/SCIPOSTPHYS.10.1.008","DOIUrl":null,"url":null,"abstract":"We consider a time-dependent extension of a perturbative mean-field approach to the dirty boson problem by considering how switching on and off a weak disorder potential affects the stationary state of an initially homogeneous Bose-Einstein condensate by the emergence of a disorder-induced condensate deformation. We find that in the switch on scenario the stationary condensate deformation turns out to be a sum of an equilibrium part and a dynamically-induced part, where the latter depends on the particular driving protocol. If the disorder is switched off afterwards, the resulting condensate deformation acquires an additional dynamically-induced part in the long-time limit, while the equilibrium part vanishes. Our results demonstrate that the condensate deformation represents an indicator of the generically non-equilibrium nature of steady states of a Bose gas in a temporally controlled weak disorder.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.10.1.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a time-dependent extension of a perturbative mean-field approach to the dirty boson problem by considering how switching on and off a weak disorder potential affects the stationary state of an initially homogeneous Bose-Einstein condensate by the emergence of a disorder-induced condensate deformation. We find that in the switch on scenario the stationary condensate deformation turns out to be a sum of an equilibrium part and a dynamically-induced part, where the latter depends on the particular driving protocol. If the disorder is switched off afterwards, the resulting condensate deformation acquires an additional dynamically-induced part in the long-time limit, while the equilibrium part vanishes. Our results demonstrate that the condensate deformation represents an indicator of the generically non-equilibrium nature of steady states of a Bose gas in a temporally controlled weak disorder.