{"title":"Effect of Industrial Waste on Strength Properties of Concrete","authors":"B. V. Kavyateja, P. Reddy","doi":"10.18280/acsm.440508","DOIUrl":null,"url":null,"abstract":"Received: 20 December 2019 Accepted: 18 August 2020 Industrial wastes generally pumped into water bodies and soil that would pollute the atmosphere. As a control measure, industrial wastes products utilized as waste building materials. In the present research, waste products from various industries like illuminate sludge and glass bottle powder used in different dosages as a replacement for fine aggregate and metakaolin used as a cement replacement. Split tensile strength and compressive strength of the concrete samples examined for M30 grade. Fine aggregate is substituted by glass bottle powder (i.e. 10 to 40%) and illuminate sludge (i.e. 10 to 30%). Metakaolin substituted for cement replacement (i.e. 4 to 12%). Glass bottle does not pollute the atmosphere, but the disposal of waste glass results wastage of land. Thereby glass bottle powder can be utilized as a cement replacement in the construction industry. Then the metakaolin and illuminate sludge are the waste products from the titanium product. The experiment performed to assess the strength properties by incorporating various industrial wastes in different dosages. Physical tests of all three products have carried out according to the code requirements. Three specimens have been tested for each industrial waste products ratio to examine the tensile and compressive strength of concrete at 7th day, 14th day and 28th day and eventually to cure to achieve the optimum strength of concrete. Addition of these industrial wastes into the concrete showed an outstanding improvement in modulus of rupture, split tensile strength and compressive strength at an early and later ages.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"3 1","pages":"353-358"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.440508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Received: 20 December 2019 Accepted: 18 August 2020 Industrial wastes generally pumped into water bodies and soil that would pollute the atmosphere. As a control measure, industrial wastes products utilized as waste building materials. In the present research, waste products from various industries like illuminate sludge and glass bottle powder used in different dosages as a replacement for fine aggregate and metakaolin used as a cement replacement. Split tensile strength and compressive strength of the concrete samples examined for M30 grade. Fine aggregate is substituted by glass bottle powder (i.e. 10 to 40%) and illuminate sludge (i.e. 10 to 30%). Metakaolin substituted for cement replacement (i.e. 4 to 12%). Glass bottle does not pollute the atmosphere, but the disposal of waste glass results wastage of land. Thereby glass bottle powder can be utilized as a cement replacement in the construction industry. Then the metakaolin and illuminate sludge are the waste products from the titanium product. The experiment performed to assess the strength properties by incorporating various industrial wastes in different dosages. Physical tests of all three products have carried out according to the code requirements. Three specimens have been tested for each industrial waste products ratio to examine the tensile and compressive strength of concrete at 7th day, 14th day and 28th day and eventually to cure to achieve the optimum strength of concrete. Addition of these industrial wastes into the concrete showed an outstanding improvement in modulus of rupture, split tensile strength and compressive strength at an early and later ages.
期刊介绍:
The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.