Anisotropic regularity of linearized compressible vortex sheets

P. Secchi
{"title":"Anisotropic regularity of linearized compressible vortex sheets","authors":"P. Secchi","doi":"10.1142/s0219891620500113","DOIUrl":null,"url":null,"abstract":"We are concerned with supersonic vortex sheets for the Euler equations of compressible inviscid fluids in two space dimensions. For the problem with constant coefficients, in [10] the authors have derived a pseudo-differential equation which describes the time evolution of the discontinuity front of the vortex sheet. In agreement with the classical stability analysis, the problem is weakly stable if $|[v\\cdot\\tau]|>2\\sqrt{2}\\,c$, and the well-posedness was obtained in standard weighted Sobolev spaces. \nThe aim of the present paper is to improve the result of [10], by showing the existence of the solution in function spaces with some additional weighted anisotropic regularity in the frequency space.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219891620500113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with supersonic vortex sheets for the Euler equations of compressible inviscid fluids in two space dimensions. For the problem with constant coefficients, in [10] the authors have derived a pseudo-differential equation which describes the time evolution of the discontinuity front of the vortex sheet. In agreement with the classical stability analysis, the problem is weakly stable if $|[v\cdot\tau]|>2\sqrt{2}\,c$, and the well-posedness was obtained in standard weighted Sobolev spaces. The aim of the present paper is to improve the result of [10], by showing the existence of the solution in function spaces with some additional weighted anisotropic regularity in the frequency space.
线性化可压缩涡旋片的各向异性规律
研究了二维空间中可压缩无粘流体欧拉方程的超声速涡片问题。对于常系数问题,在[10]中,作者导出了描述旋涡片不连续锋面时间演化的伪微分方程。与经典稳定性分析一致,该问题在$|[v\cdot\tau]|>2\sqrt{2}\,c$条件下是弱稳定的,并在标准加权Sobolev空间中得到了适定性。本文的目的是改进[10]的结果,通过在频率空间中添加一些加权各向异性正则性来证明函数空间中解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信