Numerical Representation of Symbolic Data

B. Kozarzewski
{"title":"Numerical Representation of Symbolic Data","authors":"B. Kozarzewski","doi":"10.12921/CMST.2015.21.04.008","DOIUrl":null,"url":null,"abstract":"A method of direct numerical representation of symbolic data is proposed. The method starts with parsing a sequence into an ordered set (spectrum) of distinct, non-overlapping short strings of symbols (words). Next, the words spectrum is mapped onto a vector of binary components in a high dimensional, linear space. The numerical representation allows for some arithmetical operations on symbolic data. Among them is a meaningful average spectrum of two sequences. As a test, the new numerical representation is used to build centroid vectors for the k-means clustering algorithm. It significantly enhanced the clustering quality. The advantage over the conventional approach is a high score of correct clustering several real character sequences like novel, DNA and protein.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/CMST.2015.21.04.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method of direct numerical representation of symbolic data is proposed. The method starts with parsing a sequence into an ordered set (spectrum) of distinct, non-overlapping short strings of symbols (words). Next, the words spectrum is mapped onto a vector of binary components in a high dimensional, linear space. The numerical representation allows for some arithmetical operations on symbolic data. Among them is a meaningful average spectrum of two sequences. As a test, the new numerical representation is used to build centroid vectors for the k-means clustering algorithm. It significantly enhanced the clustering quality. The advantage over the conventional approach is a high score of correct clustering several real character sequences like novel, DNA and protein.
符号数据的数字表示
提出了一种符号数据的直接数值表示方法。该方法首先将序列解析为不同的、不重叠的短字符串符号(单词)的有序集合(谱)。接下来,将词谱映射到高维线性空间中的二进制分量向量上。数字表示允许对符号数据进行一些算术运算。其中有一个有意义的两个序列的平均谱。作为测试,使用新的数值表示来构建k-means聚类算法的质心向量。显著提高了聚类质量。与传统方法相比,该方法的优点是对新颖、DNA和蛋白质等真实特征序列的正确聚类得分较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信