Leveraging candidate popularity on Twitter to predict election outcome

Manish Gaurav, Amit Srivastava, Anoop Kumar, Scott Miller
{"title":"Leveraging candidate popularity on Twitter to predict election outcome","authors":"Manish Gaurav, Amit Srivastava, Anoop Kumar, Scott Miller","doi":"10.1145/2501025.2501038","DOIUrl":null,"url":null,"abstract":"In recent years, Twitter has become one of the most important modes for social networking and disseminating content on a variety of topics. It has developed into a popular medium for political discourse and social organization during elections. There has been growing body of literature demonstrating the ability to predict the outcome of elections from Twitter data.\n This works aims to test the predictive power of Twitter in inferring the winning candidate and vote percentages of the candidates in an election. Our prediction is based on the number of times the name of a candidate is mentioned in tweets prior to elections. We develop new methods to augment the counts by counting not only the presence of candidate's official names but also their aliases and commonly appearing names. In addition, we devised a technique to include relevant and filter irrelevant tweets based on predefined set of keywords. Our approach is successful in predicting the winner of all three presidential elections held in Latin America during the months of February through April, 2013.","PeriodicalId":74521,"journal":{"name":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","volume":"113 1","pages":"7:1-7:8"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501025.2501038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

In recent years, Twitter has become one of the most important modes for social networking and disseminating content on a variety of topics. It has developed into a popular medium for political discourse and social organization during elections. There has been growing body of literature demonstrating the ability to predict the outcome of elections from Twitter data. This works aims to test the predictive power of Twitter in inferring the winning candidate and vote percentages of the candidates in an election. Our prediction is based on the number of times the name of a candidate is mentioned in tweets prior to elections. We develop new methods to augment the counts by counting not only the presence of candidate's official names but also their aliases and commonly appearing names. In addition, we devised a technique to include relevant and filter irrelevant tweets based on predefined set of keywords. Our approach is successful in predicting the winner of all three presidential elections held in Latin America during the months of February through April, 2013.
利用候选人在推特上的人气来预测选举结果
近年来,Twitter已成为社交网络和传播各种主题内容的最重要模式之一。它已发展成为选举期间政治话语和社会组织的流行媒介。越来越多的文献证明了利用Twitter数据预测选举结果的能力。这项工作旨在测试Twitter在推断选举中获胜候选人和候选人投票百分比方面的预测能力。我们的预测是基于候选人的名字在选举前的推文中被提及的次数。我们开发了新的方法来增加计数,不仅计算候选人的官方姓名,还计算他们的别名和经常出现的姓名。此外,我们还设计了一种基于预定义的关键字集来包含相关tweet和过滤不相关tweet的技术。我们的方法成功地预测了2013年2月至4月在拉丁美洲举行的所有三次总统选举的获胜者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信