Diffraction by a one‐dimensionally disordered crystal. II. Close‐packed structures

J. Kakinoki
{"title":"Diffraction by a one‐dimensionally disordered crystal. II. Close‐packed structures","authors":"J. Kakinoki","doi":"10.1107/S0365110X67003974","DOIUrl":null,"url":null,"abstract":"Kakinoki & Komura's general theory on the intensity of X-ray diffuse scattering by one-dimensionally disordered crystals is applied to stacking faults occurring in close-packed structures. Practical examples are shown for the cases of s (Reichweite)= 1, 2, 3 and 4, which cover the results given by Paterson, Wilson and Jagodzinski. The cases of double (extrinsic)-deformation fault (Johnson), triple-deformation fault (Sato), multiple-deformation fault, single and double-deformation faults (Warren) and combinations of different kinds of faults are also dealt with by applying the general method without using difference equations.","PeriodicalId":7001,"journal":{"name":"Acta Crystallographica","volume":"8 1","pages":"875-885"},"PeriodicalIF":0.0000,"publicationDate":"1967-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S0365110X67003974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

Kakinoki & Komura's general theory on the intensity of X-ray diffuse scattering by one-dimensionally disordered crystals is applied to stacking faults occurring in close-packed structures. Practical examples are shown for the cases of s (Reichweite)= 1, 2, 3 and 4, which cover the results given by Paterson, Wilson and Jagodzinski. The cases of double (extrinsic)-deformation fault (Johnson), triple-deformation fault (Sato), multiple-deformation fault, single and double-deformation faults (Warren) and combinations of different kinds of faults are also dealt with by applying the general method without using difference equations.
一维无序晶体的衍射。2近量包装结构
Kakinoki & Komura关于一维无序晶体x射线漫射散射强度的一般理论应用于密排结构中发生的层错。给出了s (Reichweite)= 1,2,3和4的实例,涵盖了Paterson, Wilson和Jagodzinski给出的结果。对双重(外在)变形断层(Johnson)、三重变形断层(Sato)、多重变形断层、单一和双重变形断层(Warren)以及不同类型断层的组合,也不使用差分方程,应用一般方法进行了处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信