Simultaneous correspondence and non-rigid 3D reconstruction of the coronary tree from single X-ray images

Eduard Serradell, Adriana Romero, R. Leta, C. Gatta, F. Moreno-Noguer
{"title":"Simultaneous correspondence and non-rigid 3D reconstruction of the coronary tree from single X-ray images","authors":"Eduard Serradell, Adriana Romero, R. Leta, C. Gatta, F. Moreno-Noguer","doi":"10.1109/ICCV.2011.6126325","DOIUrl":null,"url":null,"abstract":"We present a novel approach to simultaneously reconstruct the 3D structure of a non-rigid coronary tree and estimate point correspondences between an input X-ray image and a reference 3D shape. At the core of our approach lies an optimization scheme that iteratively fits a generative 3D model of increasing complexity and guides the matching process. As a result, and in contrast to existing approaches that assume rigidity or quasi-rigidity of the structure, our method is able to retrieve large non-linear deformations even when the input data is corrupted by the presence of noise and partial occlusions. We extensively evaluate our approach under synthetic and real data and demonstrate a remarkable improvement compared to state-of-the-art.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"9 1","pages":"850-857"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

We present a novel approach to simultaneously reconstruct the 3D structure of a non-rigid coronary tree and estimate point correspondences between an input X-ray image and a reference 3D shape. At the core of our approach lies an optimization scheme that iteratively fits a generative 3D model of increasing complexity and guides the matching process. As a result, and in contrast to existing approaches that assume rigidity or quasi-rigidity of the structure, our method is able to retrieve large non-linear deformations even when the input data is corrupted by the presence of noise and partial occlusions. We extensively evaluate our approach under synthetic and real data and demonstrate a remarkable improvement compared to state-of-the-art.
同时对应和非刚性三维重建从单一的x射线图像冠状树
我们提出了一种新的方法来同时重建非刚性冠状树的三维结构,并估计输入x射线图像和参考三维形状之间的点对应关系。我们方法的核心是一个优化方案,该方案迭代地适合日益复杂的生成3D模型,并指导匹配过程。因此,与假设结构刚性或准刚性的现有方法相反,即使输入数据被噪声和部分遮挡破坏,我们的方法也能够检索大的非线性变形。我们在综合和真实数据下广泛评估了我们的方法,并证明了与最先进的方法相比有了显着的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信