Data Structure for Efficient Processing in 3-D

Jean-François Lalonde, N. Vandapel, M. Hebert
{"title":"Data Structure for Efficient Processing in 3-D","authors":"Jean-François Lalonde, N. Vandapel, M. Hebert","doi":"10.15607/RSS.2005.I.048","DOIUrl":null,"url":null,"abstract":"Autonomous navigation in natural environment requires three-dimensional (3-D) scene representation and interpretation. High density laser-based sensing is commonly used to capture the geometry of the scene, producing large amount of 3-D points with variable spatial density. We proposed a terrain classification method using such data. The approach relies on the computation of local features in 3-D using a support volume and belongs, as such, to a larger class of computational problems where range searches are necessary. This operation on traditional data structure is very expensive and, in this paper, we present an approach to address this issue. The method relies on reusing already computed data as the terrain classification process progresses over the environment representation. We present results that show significant speed improvement using ladar data collected in various environments with a ground mobile robot.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"1 1","pages":"365-372"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Autonomous navigation in natural environment requires three-dimensional (3-D) scene representation and interpretation. High density laser-based sensing is commonly used to capture the geometry of the scene, producing large amount of 3-D points with variable spatial density. We proposed a terrain classification method using such data. The approach relies on the computation of local features in 3-D using a support volume and belongs, as such, to a larger class of computational problems where range searches are necessary. This operation on traditional data structure is very expensive and, in this paper, we present an approach to address this issue. The method relies on reusing already computed data as the terrain classification process progresses over the environment representation. We present results that show significant speed improvement using ladar data collected in various environments with a ground mobile robot.
高效三维数据处理的数据结构
自然环境下的自主导航需要三维(3-D)场景表示和解释。基于高密度激光的传感通常用于捕获场景的几何形状,产生大量具有可变空间密度的三维点。我们提出了一种基于这些数据的地形分类方法。该方法依赖于使用支持体积计算3d中的局部特征,因此属于需要范围搜索的更大一类计算问题。在传统的数据结构上进行这种操作是非常昂贵的,在本文中,我们提出了一种解决这个问题的方法。该方法依赖于在地形分类过程中重用已经计算的数据,而不是环境表示。我们提出的结果表明,使用地面移动机器人在各种环境中收集的雷达数据,显著提高了速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信