Generalized (G’ / G) – expansion method for the loaded shallow water wave equation

Q3 Earth and Planetary Sciences
A. T. Baimankulov, M. Khasanov, A. Ismailov, O. Y. Ganjaev
{"title":"Generalized (G’ / G) – expansion method for the loaded shallow water wave equation","authors":"A. T. Baimankulov, M. Khasanov, A. Ismailov, O. Y. Ganjaev","doi":"10.47533/2023.1606-146x.12","DOIUrl":null,"url":null,"abstract":"This article is devoted to finding solutions for the traveling wave of the loaded wave equation in shallow water. One of the approaches to finding solutions by the expansion method (G / G) is given, which is one of the most effective ways to obtain solutions. When parameters are taken as special values, solitary waves are also derived from traveling waves. Solutions for the traveling wave are expressed by hyperbolic and trigonometric functions. This method is easy to implement using well-known software packages that allow solving complex nonlinear evolutionary equations of mathematical physics.","PeriodicalId":45691,"journal":{"name":"News of the National Academy of Sciences of the Republic of Kazakhstan-Series of Geology and Technical Sciences","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"News of the National Academy of Sciences of the Republic of Kazakhstan-Series of Geology and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47533/2023.1606-146x.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This article is devoted to finding solutions for the traveling wave of the loaded wave equation in shallow water. One of the approaches to finding solutions by the expansion method (G / G) is given, which is one of the most effective ways to obtain solutions. When parameters are taken as special values, solitary waves are also derived from traveling waves. Solutions for the traveling wave are expressed by hyperbolic and trigonometric functions. This method is easy to implement using well-known software packages that allow solving complex nonlinear evolutionary equations of mathematical physics.
加载浅水波动方程的广义(G′/ G) -展开法
本文致力于寻找浅水中载波方程的行波解。给出了用展开法(G/ G)求解的一种方法,它是最有效的求解方法之一。当参数为特殊值时,也可由行波导出孤立波。行波的解用双曲函数和三角函数表示。这种方法很容易实现,使用知名的软件包,允许求解复杂的非线性数学物理进化方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
83
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信