{"title":"Dimensionality Reduction for Data Visualization and Linear Classification, and the Trade-off between Robustness and Classification Accuracy","authors":"Martin Becker, J. Lippel, Thomas Zielke","doi":"10.1109/ICPR48806.2021.9412865","DOIUrl":null,"url":null,"abstract":"This paper has three intertwined goals. The first is to introduce a new similarity measure for scatter plots. It uses Delaunay triangulations to compare two scatter plots regarding their relative positioning of clusters. The second is to apply this measure for the robustness assessment of a recent deep neural network (DNN) approach to dimensionality reduction (DR) for data visualization. It uses a nonlinear generalization of Fisher's linear discriminant analysis (LDA) as the encoder network of a deep autoencoder (DAE). The DAE's decoder network acts as a regularizer. The third goal is to look at different variants of the DNN: ones that promise robustness and ones that promise high classification accuracies. This is to study the trade-off between these two objectives – our results support the recent claim that robustness may be at odds with accuracy; however, results that are balanced regarding both objectives are achievable. We see a restricted Boltzmann machine (RBM) pretraining and the DAE based regularization as important building blocks for achieving balanced results. As a means of assessing the robustness of DR methods, we propose a measure that is based on our similarity measure for scatter plots. The robustness measure comes with a superimposition view of Delaunay triangulations that enables a fast comparison of results from multiple DR methods.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"9 1","pages":"6478-6485"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper has three intertwined goals. The first is to introduce a new similarity measure for scatter plots. It uses Delaunay triangulations to compare two scatter plots regarding their relative positioning of clusters. The second is to apply this measure for the robustness assessment of a recent deep neural network (DNN) approach to dimensionality reduction (DR) for data visualization. It uses a nonlinear generalization of Fisher's linear discriminant analysis (LDA) as the encoder network of a deep autoencoder (DAE). The DAE's decoder network acts as a regularizer. The third goal is to look at different variants of the DNN: ones that promise robustness and ones that promise high classification accuracies. This is to study the trade-off between these two objectives – our results support the recent claim that robustness may be at odds with accuracy; however, results that are balanced regarding both objectives are achievable. We see a restricted Boltzmann machine (RBM) pretraining and the DAE based regularization as important building blocks for achieving balanced results. As a means of assessing the robustness of DR methods, we propose a measure that is based on our similarity measure for scatter plots. The robustness measure comes with a superimposition view of Delaunay triangulations that enables a fast comparison of results from multiple DR methods.