{"title":"Investigation of the Optoelectronic and Photovoltaic Properties of YxIN1-xP Alloys using First Principles Calculations","authors":"K. Talbi, Youcef Cherchab, A. Mir, B. Bouhadef","doi":"10.2478/awutp-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract Structural stability, electronic, optical, and photovoltaic properties of pure and doped InP were evaluated by using first principles calculations via the density functional theory (DFT). The exchange-correlation potential is treated with generalized gradient approximation (GGA-PBE). Additionally, the Tran Blaha modified Becke-Johnson exchange potential (TB-mBJ) is employed, because it gives very accurate results of the band gap in solids. Our results reveal that all compounds are energetically and mechanically stable. It is found that for Y concentrations less than 30%, the favored structure is a Zinc blende-like one, while for Y concentrations greater than 30%, the favored structure is a NaCl-like structure. The substitution of In by Y is found to be able to enlarge the direct bandgap of about 34% (from 1.43 eV to 2.17 eV) and confirms the semiconductor behavior for zinc blende stable structures. The absorption coefficient is reasonably exceeding 105 cm−1 for YxIn1-xP alloys in the case (x=0 and x=25%). The reflectivity shows less than 30% around the energy value of 2 eV and an efficiency of solar cell of 18% can be achieved for Y0.25In0.75P. Also, a thickness of L = 1μm is enough to confirm the experimental data. Regarding to the matching of lattice parameters (a mismatch < 4%) of InP and Y0.25In0.75P and the band gap energy difference made Y0.25In0.75P suitable for optoelectronic and photovoltaic devices in particularity as Tandem solar cells (Y0.25In0.75P/InP) and quantum well (Y0.25In0.75P/InP/Y0.25In0.75P) applications. In the absence of experimental works, our results can be useful for further studies.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of West University of Timisoara Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/awutp-2022-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Structural stability, electronic, optical, and photovoltaic properties of pure and doped InP were evaluated by using first principles calculations via the density functional theory (DFT). The exchange-correlation potential is treated with generalized gradient approximation (GGA-PBE). Additionally, the Tran Blaha modified Becke-Johnson exchange potential (TB-mBJ) is employed, because it gives very accurate results of the band gap in solids. Our results reveal that all compounds are energetically and mechanically stable. It is found that for Y concentrations less than 30%, the favored structure is a Zinc blende-like one, while for Y concentrations greater than 30%, the favored structure is a NaCl-like structure. The substitution of In by Y is found to be able to enlarge the direct bandgap of about 34% (from 1.43 eV to 2.17 eV) and confirms the semiconductor behavior for zinc blende stable structures. The absorption coefficient is reasonably exceeding 105 cm−1 for YxIn1-xP alloys in the case (x=0 and x=25%). The reflectivity shows less than 30% around the energy value of 2 eV and an efficiency of solar cell of 18% can be achieved for Y0.25In0.75P. Also, a thickness of L = 1μm is enough to confirm the experimental data. Regarding to the matching of lattice parameters (a mismatch < 4%) of InP and Y0.25In0.75P and the band gap energy difference made Y0.25In0.75P suitable for optoelectronic and photovoltaic devices in particularity as Tandem solar cells (Y0.25In0.75P/InP) and quantum well (Y0.25In0.75P/InP/Y0.25In0.75P) applications. In the absence of experimental works, our results can be useful for further studies.