Optimizing the performance of genetic algorithms for finding the optimal value of a given function

Y. Huang, S.-P. Chan
{"title":"Optimizing the performance of genetic algorithms for finding the optimal value of a given function","authors":"Y. Huang, S.-P. Chan","doi":"10.1109/MWSCAS.1991.252087","DOIUrl":null,"url":null,"abstract":"An approach for optimizing the performance of genetic algorithms (GAs) which is derived from the exhaustive examinations of some parameters of GAs is provided. The problems of finding the optimal values of some numerical functions are used as examples to illustrate the performance of GAs. GAs are shown to be effective for solving these problems. In addition, various parameters of the optimization algorithm are critically selected for efficiency. Experimental results suggest that while it is possible to optimize GA control parameters, excellent performances can be obtained with an appropriately selected range of GA control parameter settings, based mainly on the experience of the users.<<ETX>>","PeriodicalId":6453,"journal":{"name":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","volume":"6 1","pages":"819-822 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1991.252087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An approach for optimizing the performance of genetic algorithms (GAs) which is derived from the exhaustive examinations of some parameters of GAs is provided. The problems of finding the optimal values of some numerical functions are used as examples to illustrate the performance of GAs. GAs are shown to be effective for solving these problems. In addition, various parameters of the optimization algorithm are critically selected for efficiency. Experimental results suggest that while it is possible to optimize GA control parameters, excellent performances can be obtained with an appropriately selected range of GA control parameter settings, based mainly on the experience of the users.<>
优化遗传算法的性能,以寻找给定函数的最优值
本文提出了一种优化遗传算法性能的方法,该方法是通过对遗传算法的一些参数进行穷举检验而得到的。以求解某些数值函数的最优值的问题为例,说明了遗传算法的性能。气体被证明是解决这些问题的有效方法。此外,为了提高效率,对优化算法的各个参数进行了严格的选择。实验结果表明,虽然可以优化遗传算法控制参数,但主要根据用户的经验选择适当的遗传算法控制参数设置范围,可以获得优异的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信