{"title":"Moduli spaces of complex affine and dilation surfaces","authors":"Paul Apisa, Matt Bainbridge, Jane Wang","doi":"10.1515/crelle-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract We construct moduli spaces of complex affine and dilation surfaces. Using ideas of Veech [W. A. Veech, Flat surfaces, Amer. J. Math. 115 1993, 3, 589–689], we show that the moduli space 𝒜 g , n ( 𝒎 ) {{\\mathcal{A}}_{g,n}(\\boldsymbol{m})} of genus g affine surfaces with cone points of complex order 𝒎 = ( m 1 … , m n ) {\\boldsymbol{m}=(m_{1}\\ldots,m_{n})} is a holomorphic affine bundle over ℳ g , n {\\mathcal{M}_{g,n}} , and the moduli space 𝒟 g , n ( 𝒎 ) {{\\mathcal{D}}_{g,n}(\\boldsymbol{m})} of dilation surfaces is a covering space of ℳ g , n {\\mathcal{M}_{g,n}} . We then classify the connected components of 𝒟 g , n ( 𝒎 ) {{\\mathcal{D}}_{g,n}(\\boldsymbol{m})} and show that it is an orbifold- K ( G , 1 ) {K(G,1)} , where G is the framed mapping class group of [A. Calderon and N. Salter, Framed mapping class groups and the monodromy of strata of Abelian differentials, preprint 2020].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We construct moduli spaces of complex affine and dilation surfaces. Using ideas of Veech [W. A. Veech, Flat surfaces, Amer. J. Math. 115 1993, 3, 589–689], we show that the moduli space 𝒜 g , n ( 𝒎 ) {{\mathcal{A}}_{g,n}(\boldsymbol{m})} of genus g affine surfaces with cone points of complex order 𝒎 = ( m 1 … , m n ) {\boldsymbol{m}=(m_{1}\ldots,m_{n})} is a holomorphic affine bundle over ℳ g , n {\mathcal{M}_{g,n}} , and the moduli space 𝒟 g , n ( 𝒎 ) {{\mathcal{D}}_{g,n}(\boldsymbol{m})} of dilation surfaces is a covering space of ℳ g , n {\mathcal{M}_{g,n}} . We then classify the connected components of 𝒟 g , n ( 𝒎 ) {{\mathcal{D}}_{g,n}(\boldsymbol{m})} and show that it is an orbifold- K ( G , 1 ) {K(G,1)} , where G is the framed mapping class group of [A. Calderon and N. Salter, Framed mapping class groups and the monodromy of strata of Abelian differentials, preprint 2020].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.