{"title":"Trajectory image based dynamic gesture recognition with convolutional neural networks","authors":"Jiani Hu, Chunxiao Fan, Yue Ming","doi":"10.1109/ICCAS.2015.7364671","DOIUrl":null,"url":null,"abstract":"Robust dynamic gesture recognition algorithm is of great value for kinds of intelligent interactive systems. Most current researches on this field are based on trajectory time-series, which is unstable and limited. In this paper, we proposed a novel method to realize dynamic gesture recognition by analyzing the static trajectory images with Convolutional Neural Networks (CNN). First of all, a new motion-capture device named Leap Motion is used to track fingertip positions. An effective gesture spotting algorithm is applied to identify the start/end points of dynamic gestures. Then, we map the 3D fingertip coordinates to an image acquisition window frame by frame to get the corresponding trajectory images. After a series of preprocessing steps, the normalized trajectory images are fed to a CNN model. We test the performance of the proposed method on a self-built database, and experimental results show the effectiveness for dynamic gestures recognition of numbers 0-9, with the average recognition rate up to 98.8%.","PeriodicalId":6641,"journal":{"name":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","volume":"140 1","pages":"1885-1889"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2015.7364671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Robust dynamic gesture recognition algorithm is of great value for kinds of intelligent interactive systems. Most current researches on this field are based on trajectory time-series, which is unstable and limited. In this paper, we proposed a novel method to realize dynamic gesture recognition by analyzing the static trajectory images with Convolutional Neural Networks (CNN). First of all, a new motion-capture device named Leap Motion is used to track fingertip positions. An effective gesture spotting algorithm is applied to identify the start/end points of dynamic gestures. Then, we map the 3D fingertip coordinates to an image acquisition window frame by frame to get the corresponding trajectory images. After a series of preprocessing steps, the normalized trajectory images are fed to a CNN model. We test the performance of the proposed method on a self-built database, and experimental results show the effectiveness for dynamic gestures recognition of numbers 0-9, with the average recognition rate up to 98.8%.