Brain Computer Interface Based on Motor Imagery for Mechanical Arm Grasp Control

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Tianwei Shi, Ke Chen, Ling Ren, Wenhua Cui
{"title":"Brain Computer Interface Based on Motor Imagery for Mechanical Arm Grasp Control","authors":"Tianwei Shi, Ke Chen, Ling Ren, Wenhua Cui","doi":"10.5755/j01.itc.52.2.32873","DOIUrl":null,"url":null,"abstract":"This paper puts forward a brain computer interface (BCI) system to realize the hand and wrist control using the ABB Mechanical Arm. This BCI system gathers four kinds of motor imaginary (MI) tasks (hand grasp, hand spread, wrist flexion and wrist extension) electroencephalogram (EEG) signals from 30 electrodes. It utilizes two fifth-order Butterworth Band-Pass Filter (BPF) with different bandwidths and normalization method to achieve the raw MI tasks EEG signals preprocessing. The main challenge of feature extraction is to extract enough representative features from MI tasks to classify them. This proposed BCI system extracts eleven kinds of features in time domain and time-frequency domain and uses mutual information method to reduce the large dimension of the extracted features. In addition, the BCI system applies a single convolutional layer Convolutional neural networks (CNN) with 30 filters to implement the quaternary classification of MI tasks. Compared with early researches, the classification accuracy of this BCI system is increased by about 35%. The actual mechanical arm grasping control experiments verifies that this BCI system has good adaptability.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"100 1","pages":"358-366"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.2.32873","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper puts forward a brain computer interface (BCI) system to realize the hand and wrist control using the ABB Mechanical Arm. This BCI system gathers four kinds of motor imaginary (MI) tasks (hand grasp, hand spread, wrist flexion and wrist extension) electroencephalogram (EEG) signals from 30 electrodes. It utilizes two fifth-order Butterworth Band-Pass Filter (BPF) with different bandwidths and normalization method to achieve the raw MI tasks EEG signals preprocessing. The main challenge of feature extraction is to extract enough representative features from MI tasks to classify them. This proposed BCI system extracts eleven kinds of features in time domain and time-frequency domain and uses mutual information method to reduce the large dimension of the extracted features. In addition, the BCI system applies a single convolutional layer Convolutional neural networks (CNN) with 30 filters to implement the quaternary classification of MI tasks. Compared with early researches, the classification accuracy of this BCI system is increased by about 35%. The actual mechanical arm grasping control experiments verifies that this BCI system has good adaptability.
基于运动图像的机械臂抓取控制脑机接口
提出了一种脑机接口(BCI)系统,利用ABB机械臂实现手和手腕的控制。该脑机接口系统收集来自30个电极的4种运动想象(MI)任务(手抓、手展开、腕屈和腕伸)脑电图(EEG)信号。利用两个不同带宽的五阶巴特沃斯带通滤波器(BPF)和归一化方法对原始MI任务的脑电信号进行预处理。特征提取的主要挑战是从MI任务中提取足够的代表性特征来对它们进行分类。该BCI系统在时域和时频域提取了11种特征,并采用互信息方法对提取的特征进行了降维处理。此外,BCI系统采用带有30个滤波器的单卷积层卷积神经网络(CNN)来实现MI任务的四级分类。与早期研究相比,该BCI系统的分类准确率提高了约35%。实际机械臂抓取控制实验验证了该BCI系统具有良好的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信