{"title":"Short cycles in high genus unicellular maps","authors":"S. Janson, B. Louf","doi":"10.1214/21-aihp1218","DOIUrl":null,"url":null,"abstract":"We study large uniform random maps with one face whose genus grows linearly with the number of edges, which are a model of discrete hyperbolic geometry. In previous works, several hyperbolic geometric features have been investigated. In the present work, we study the number of short cycles in a uniform unicellular map of high genus, and we show that it converges to a Poisson distribution. As a corollary, we obtain the law of the systole of uniform unicellular maps in high genus. We also obtain the asymptotic distribution of the vertex degrees in such a map.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 4
Abstract
We study large uniform random maps with one face whose genus grows linearly with the number of edges, which are a model of discrete hyperbolic geometry. In previous works, several hyperbolic geometric features have been investigated. In the present work, we study the number of short cycles in a uniform unicellular map of high genus, and we show that it converges to a Poisson distribution. As a corollary, we obtain the law of the systole of uniform unicellular maps in high genus. We also obtain the asymptotic distribution of the vertex degrees in such a map.