{"title":"A New Suppression-based Possibilistic Fuzzy c-means Clustering Algorithm","authors":"J. Arora, M. Tushir, Shivank Kumar Dadhwal","doi":"10.4108/eetsis.v10i3.2057","DOIUrl":null,"url":null,"abstract":"Possibilistic fuzzy c-means (PFCM) is one of the most widely used clustering algorithm that solves the noise sensitivity problem of Fuzzy c-means (FCM) and coincident clusters problem of possibilistic c-means (PCM). Though PFCM is a highly reliable clustering algorithm but the efficiency of the algorithm can be further improved by introducing the concept of suppression. Suppression-based algorithms employ the winner and non-winner based suppression technique on the datasets, helping in performing better classification of real-world datasets into clusters. In this paper, we propose a suppression-based possibilistic fuzzy c-means clustering algorithm (SPFCM) for the process of clustering. The paper explores the performance of the proposed methodology based on number of misclassifications for various real datasets and synthetic datasets and it is found to perform better than other clustering techniques in the sequel, i.e., normal as well as suppression-based algorithms. The SPFCM is found to perform more efficiently and converges faster as compared to other clustering techniques.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.v10i3.2057","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Possibilistic fuzzy c-means (PFCM) is one of the most widely used clustering algorithm that solves the noise sensitivity problem of Fuzzy c-means (FCM) and coincident clusters problem of possibilistic c-means (PCM). Though PFCM is a highly reliable clustering algorithm but the efficiency of the algorithm can be further improved by introducing the concept of suppression. Suppression-based algorithms employ the winner and non-winner based suppression technique on the datasets, helping in performing better classification of real-world datasets into clusters. In this paper, we propose a suppression-based possibilistic fuzzy c-means clustering algorithm (SPFCM) for the process of clustering. The paper explores the performance of the proposed methodology based on number of misclassifications for various real datasets and synthetic datasets and it is found to perform better than other clustering techniques in the sequel, i.e., normal as well as suppression-based algorithms. The SPFCM is found to perform more efficiently and converges faster as compared to other clustering techniques.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.