Exponential Convergence of Sinkhorn Under Regularization Scheduling

Jingbang Chen, Yang P. Liu, Richard Peng, Arvind Ramaswami
{"title":"Exponential Convergence of Sinkhorn Under Regularization Scheduling","authors":"Jingbang Chen, Yang P. Liu, Richard Peng, Arvind Ramaswami","doi":"10.48550/arXiv.2207.00736","DOIUrl":null,"url":null,"abstract":"In 2013, Cuturi [Cut13] introduced the Sinkhorn algorithm for matrix scaling as a method to compute solutions to regularized optimal transport problems. In this paper, aiming at a better convergence rate for a high accuracy solution, we work on understanding the Sinkhorn algorithm under regularization scheduling, and thus modify it with a mechanism that adaptively doubles the regularization parameter $\\eta$ periodically. We prove that such modified version of Sinkhorn has an exponential convergence rate as iteration complexity depending on $\\log(1/\\varepsilon)$ instead of $\\varepsilon^{-O(1)}$ from previous analyses [Cut13][ANWR17] in the optimal transport problems with integral supply and demand. Furthermore, with cost and capacity scaling procedures, the general optimal transport problem can be solved with a logarithmic dependence on $1/\\varepsilon$ as well.","PeriodicalId":93610,"journal":{"name":"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)","volume":"81 1","pages":"180-188"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.00736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In 2013, Cuturi [Cut13] introduced the Sinkhorn algorithm for matrix scaling as a method to compute solutions to regularized optimal transport problems. In this paper, aiming at a better convergence rate for a high accuracy solution, we work on understanding the Sinkhorn algorithm under regularization scheduling, and thus modify it with a mechanism that adaptively doubles the regularization parameter $\eta$ periodically. We prove that such modified version of Sinkhorn has an exponential convergence rate as iteration complexity depending on $\log(1/\varepsilon)$ instead of $\varepsilon^{-O(1)}$ from previous analyses [Cut13][ANWR17] in the optimal transport problems with integral supply and demand. Furthermore, with cost and capacity scaling procedures, the general optimal transport problem can be solved with a logarithmic dependence on $1/\varepsilon$ as well.
正则化调度下Sinkhorn的指数收敛性
2013年,Cuturi [Cut13]引入了用于矩阵缩放的Sinkhorn算法,作为计算正则化最优运输问题解的方法。本文以更好的收敛速度和更高的精度解为目标,研究了正则化调度下的Sinkhorn算法,并对其进行了改进,引入了一种周期性地自适应加倍正则化参数$\eta$的机制。我们从之前的分析[Cut13][ANWR17]中证明了这种改进版本的Sinkhorn在具有整体供需的最优运输问题中具有指数收敛率,即迭代复杂度依赖于$\log(1/\varepsilon)$而不是$\varepsilon^{-O(1)}$。此外,通过成本和容量缩放过程,一般最优运输问题也可以通过对$1/\varepsilon$的对数依赖来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信