Nonstandard Fourier Pseudospectral Time Domain (PSTD) Schemes for Partial Differential Equations

B. Treeby, Elliott S. Wise, B. Cox
{"title":"Nonstandard Fourier Pseudospectral Time Domain (PSTD) Schemes for Partial Differential Equations","authors":"B. Treeby, Elliott S. Wise, B. Cox","doi":"10.4208/cicp.oa-2017-0192","DOIUrl":null,"url":null,"abstract":"A class of nonstandard pseudospectral time domain (PSTD) schemes for solving time-dependent hyperbolic and parabolic partial differential equations (PDEs) is introduced. These schemes use the Fourier collocation spectral method to compute spatial gradients and a nonstandard finite difference scheme to integrate forwards in time. The modified denominator function that makes the finite difference time scheme exact is transformed into the spatial frequency domain or k-space using the dispersion relation for the governing PDE. This allows the correction factor to be applied in the spatial frequency domain as part of the spatial gradient calculation. The derived schemes can be formulated to be unconditionally stable, and apply to PDEs in any space dimension. Examples of the resulting nonstandard PSTD schemes for several PDEs are given, including the wave equation, diffusion equation, and convection-diffusion equation.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2017-0192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A class of nonstandard pseudospectral time domain (PSTD) schemes for solving time-dependent hyperbolic and parabolic partial differential equations (PDEs) is introduced. These schemes use the Fourier collocation spectral method to compute spatial gradients and a nonstandard finite difference scheme to integrate forwards in time. The modified denominator function that makes the finite difference time scheme exact is transformed into the spatial frequency domain or k-space using the dispersion relation for the governing PDE. This allows the correction factor to be applied in the spatial frequency domain as part of the spatial gradient calculation. The derived schemes can be formulated to be unconditionally stable, and apply to PDEs in any space dimension. Examples of the resulting nonstandard PSTD schemes for several PDEs are given, including the wave equation, diffusion equation, and convection-diffusion equation.
偏微分方程的非标准傅立叶伪谱时域(PSTD)格式
介绍了求解时变双曲型和抛物型偏微分方程的一类非标准伪谱时域格式。这些格式采用傅里叶搭配谱法计算空间梯度,采用非标准有限差分格式进行时间正向积分。利用控制偏微分方程的色散关系,将使有限差分时间格式精确的修正分母函数转换到空间频域或k空间。这使得校正因子可以作为空间梯度计算的一部分应用于空间频域。所导出的格式是无条件稳定的,适用于任意空间维数的偏微分方程。给出了几种偏微分方程的非标准psd格式的例子,包括波动方程、扩散方程和对流扩散方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信