A review of green hydrogen production based on solar energy; techniques and methods

Q2 Engineering
Q. Hassan, V. S. Tabar, A. Z. Sameen, H. M. Salman, M. Jaszczur
{"title":"A review of green hydrogen production based on solar energy; techniques and methods","authors":"Q. Hassan, V. S. Tabar, A. Z. Sameen, H. M. Salman, M. Jaszczur","doi":"10.1515/ehs-2022-0134","DOIUrl":null,"url":null,"abstract":"Abstract The study examines the methods for producing hydrogen using solar energy as a catalyst. The two commonly recognised categories of processes are direct and indirect. Due to the indirect processes low efficiency, excessive heat dissipation, and dearth of readily available heat-resistant materials, they are ranked lower than the direct procedures despite the direct procedures superior thermal performance. Electrolysis, bio photosynthesis, and thermoelectric photodegradation are a few examples of indirect approaches. It appears that indirect approaches have certain advantages. The heterogeneous photocatalytic process minimises the quantity of emissions released into the environment; thermochemical reactions stand out for having low energy requirements due to the high temperatures generated; and electrolysis is efficient while having very little pollution created. Electrolysis has the highest exergy and energy efficiency when compared to other methods of creating hydrogen, according to the evaluation.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Harvesting and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ehs-2022-0134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 11

Abstract

Abstract The study examines the methods for producing hydrogen using solar energy as a catalyst. The two commonly recognised categories of processes are direct and indirect. Due to the indirect processes low efficiency, excessive heat dissipation, and dearth of readily available heat-resistant materials, they are ranked lower than the direct procedures despite the direct procedures superior thermal performance. Electrolysis, bio photosynthesis, and thermoelectric photodegradation are a few examples of indirect approaches. It appears that indirect approaches have certain advantages. The heterogeneous photocatalytic process minimises the quantity of emissions released into the environment; thermochemical reactions stand out for having low energy requirements due to the high temperatures generated; and electrolysis is efficient while having very little pollution created. Electrolysis has the highest exergy and energy efficiency when compared to other methods of creating hydrogen, according to the evaluation.
基于太阳能的绿色制氢研究进展技术与方法
摘要研究了以太阳能为催化剂的制氢方法。通常公认的两类过程是直接和间接的。由于间接工艺效率低,散热过度,以及缺乏现成的耐热材料,尽管直接工艺具有优越的热性能,但它们的排名低于直接工艺。电解、生物光合作用和热电光降解是间接方法的几个例子。看来间接方法有一定的优势。多相光催化过程最大限度地减少了排放到环境中的排放量;热化学反应由于产生的高温而具有较低的能量需求;电解是高效的,而且产生的污染很少。根据评估,与其他制造氢气的方法相比,电解具有最高的火用和能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Harvesting and Systems
Energy Harvesting and Systems Energy-Energy Engineering and Power Technology
CiteScore
2.00
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信