Exploiting user and item embedding in latent factor models for recommendations

Zhaoqiang Li, Jiajin Huang, N. Zhong
{"title":"Exploiting user and item embedding in latent factor models for recommendations","authors":"Zhaoqiang Li, Jiajin Huang, N. Zhong","doi":"10.1145/3106426.3109437","DOIUrl":null,"url":null,"abstract":"Matrix factorization (MF) models and their extensions are widely used in modern recommender systems. MF models decompose the observed user-item interaction matrix into user and item latent factors. In this paper, we propose mixture models which combine the technology of MF and the embedding. We show that some of these models significantly improve the performance over the state-of-the-art models on two real-world datasets, and explain how the mixture models improve the quality of recommendations.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3109437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Matrix factorization (MF) models and their extensions are widely used in modern recommender systems. MF models decompose the observed user-item interaction matrix into user and item latent factors. In this paper, we propose mixture models which combine the technology of MF and the embedding. We show that some of these models significantly improve the performance over the state-of-the-art models on two real-world datasets, and explain how the mixture models improve the quality of recommendations.
利用潜在因素模型中的用户和项目嵌入进行推荐
矩阵分解模型及其扩展在现代推荐系统中得到了广泛的应用。MF模型将观察到的用户-物品交互矩阵分解为用户和物品潜在因素。在本文中,我们提出了一种结合了MF技术和嵌入技术的混合模型。我们展示了其中一些模型在两个真实数据集上显著提高了最先进模型的性能,并解释了混合模型如何提高推荐的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信