Photo-assisted spin transport in double quantum dots with spin–orbit interaction

IF 2.9 4区 物理与天体物理 Q2 OPTICS
D. Fernández-Fernández, Jordi Pic'o-Cort'es, Sergio Vela Liñán, G. Platero
{"title":"Photo-assisted spin transport in double quantum dots with spin–orbit interaction","authors":"D. Fernández-Fernández, Jordi Pic'o-Cort'es, Sergio Vela Liñán, G. Platero","doi":"10.1088/2515-7639/acd1b7","DOIUrl":null,"url":null,"abstract":"We investigate the effect of spin–orbit interaction on the intra- and interdot particle dynamics of a double quantum dot (QD) under ac electric fields. The former is modeled as an effective ac magnetic field that produces electric-dipole spin resonance transitions, while the latter is introduced via spin-flip tunneling amplitudes. We observe the appearance of non-trivial spin-polarized dark states (DSs), arising from an ac-induced interference between photo-assisted spin-conserving and spin-flip tunneling processes. These DSs can be employed to precisely measure the spin–orbit coupling in QD systems. Furthermore, we show that the interplay between photo-assisted transitions and spin-flip tunneling enables the system to operate as a highly tunable spin filter. Finally, we investigate the operation of the system as a resonant flopping-mode qubit for arbitrary ac voltage amplitudes, allowing for high tunability and enhanced qubit control possibilities.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"46 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/acd1b7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 3

Abstract

We investigate the effect of spin–orbit interaction on the intra- and interdot particle dynamics of a double quantum dot (QD) under ac electric fields. The former is modeled as an effective ac magnetic field that produces electric-dipole spin resonance transitions, while the latter is introduced via spin-flip tunneling amplitudes. We observe the appearance of non-trivial spin-polarized dark states (DSs), arising from an ac-induced interference between photo-assisted spin-conserving and spin-flip tunneling processes. These DSs can be employed to precisely measure the spin–orbit coupling in QD systems. Furthermore, we show that the interplay between photo-assisted transitions and spin-flip tunneling enables the system to operate as a highly tunable spin filter. Finally, we investigate the operation of the system as a resonant flopping-mode qubit for arbitrary ac voltage amplitudes, allowing for high tunability and enhanced qubit control possibilities.
具有自旋轨道相互作用的双量子点的光辅助自旋输运
研究了在交流电场作用下,自旋轨道相互作用对双量子点(QD)点内和点间粒子动力学的影响。前者被建模为产生电偶极子自旋共振跃迁的有效交流磁场,而后者是通过自旋翻转隧穿振幅引入的。我们观察到非平凡的自旋极化暗态(DSs)的出现,这是由光辅助自旋守恒和自旋翻转隧道过程之间的交流诱导干涉引起的。这些DSs可以用来精确测量量子点系统中的自旋轨道耦合。此外,我们证明了光辅助跃迁和自旋翻转隧道之间的相互作用使系统能够作为一个高度可调的自旋滤波器运行。最后,我们研究了该系统作为任意交流电压幅值的谐振触发器模式量子比特的操作,允许高可调性和增强的量子比特控制可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
48.10%
发文量
53
审稿时长
3 months
期刊介绍: This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信