Recurrent neural networks with finite-time terminal sliding mode control for the fractional-order chaotic system with Gaussian noise

IF 1.6 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Zengyue Zhan, Xiaoshan Zhao, Ruilong Yang
{"title":"Recurrent neural networks with finite-time terminal sliding mode control for the fractional-order chaotic system with Gaussian noise","authors":"Zengyue Zhan,&nbsp;Xiaoshan Zhao,&nbsp;Ruilong Yang","doi":"10.1007/s12648-023-02778-w","DOIUrl":null,"url":null,"abstract":"<div><p>A new finite-time terminal sliding mode control (TSMC) based on recurrent neural networks (RNN) is proposed aiming at fractional-order chaotic systems containing Gaussian white noise. At the same time, there are more accurate detection targets. Firstly, we can make tracking errors of state variables converge to zero quickly in finite time. Then the scheme is applied to the fractional-order PMSM system, and the effectiveness of the control scheme is verified by numerical simulation. Based on the above two points, the latter has more influence.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"98 1","pages":"291 - 300"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-023-02778-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A new finite-time terminal sliding mode control (TSMC) based on recurrent neural networks (RNN) is proposed aiming at fractional-order chaotic systems containing Gaussian white noise. At the same time, there are more accurate detection targets. Firstly, we can make tracking errors of state variables converge to zero quickly in finite time. Then the scheme is applied to the fractional-order PMSM system, and the effectiveness of the control scheme is verified by numerical simulation. Based on the above two points, the latter has more influence.

Abstract Image

针对具有高斯噪声的分数阶混沌系统的具有有限时间终端滑模控制功能的递归神经网络
针对含有高斯白噪声的分数阶混沌系统,提出了一种基于递归神经网络(RNN)的新型有限时间终端滑模控制(TSMC)。同时,还有更精确的检测目标。首先,我们可以使状态变量的跟踪误差在有限时间内快速收敛为零。然后将该方案应用于分数阶 PMSM 系统,并通过数值仿真验证了控制方案的有效性。基于以上两点,后者的影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信