Identification of Bioactive Molecules from Combretum micranthum as Potential Inhibitors of α-amylase through Computational Investigations

D. S. Bodun, D. Omoboyowa, T. Balogun, Abigail Osinachi Enyinnaya
{"title":"Identification of Bioactive Molecules from Combretum micranthum as Potential Inhibitors of α-amylase through Computational Investigations","authors":"D. S. Bodun, D. Omoboyowa, T. Balogun, Abigail Osinachi Enyinnaya","doi":"10.33084/jmd.v2i2.3673","DOIUrl":null,"url":null,"abstract":"The rising prevalence of diabetes necessitates continued research into natural antidiabetic medicines that target a key biochemical enzyme involved. The α-amylase enzyme is involved in the digestion of starch, glycogen, and disaccharides in the gastrointestinal tract. Its essential roles and distinct properties make it an effective antidiabetic target. This work aimed to use in silico approaches to find possible α-amylase inhibitors from Combretum micranthum bioactive substances. On the Schrödinger Maestro 12.5, over 50 C. micranthum compounds were screened, followed by MM-GBSA and ADMET (absorption, distribution, metabolism, excretion, and toxicity) studies of the highest affinity compounds. The α-amylase binding affinities were higher for rutin trihydrate and myricetin-3-rutinoside (-12.162 kcal/mol and -10.935 kcal/mol, respectively). They reacted with amino acids that are required for the inhibition of α-amylase. As a result, these compounds have the structural characteristics, binding affinities, and molecular interactions necessary as α-amylase inhibitors and could be turned into antidiabetic medicines through lead optimization and experimental research.","PeriodicalId":16421,"journal":{"name":"Journal of Molecular Docking","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Docking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33084/jmd.v2i2.3673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rising prevalence of diabetes necessitates continued research into natural antidiabetic medicines that target a key biochemical enzyme involved. The α-amylase enzyme is involved in the digestion of starch, glycogen, and disaccharides in the gastrointestinal tract. Its essential roles and distinct properties make it an effective antidiabetic target. This work aimed to use in silico approaches to find possible α-amylase inhibitors from Combretum micranthum bioactive substances. On the Schrödinger Maestro 12.5, over 50 C. micranthum compounds were screened, followed by MM-GBSA and ADMET (absorption, distribution, metabolism, excretion, and toxicity) studies of the highest affinity compounds. The α-amylase binding affinities were higher for rutin trihydrate and myricetin-3-rutinoside (-12.162 kcal/mol and -10.935 kcal/mol, respectively). They reacted with amino acids that are required for the inhibition of α-amylase. As a result, these compounds have the structural characteristics, binding affinities, and molecular interactions necessary as α-amylase inhibitors and could be turned into antidiabetic medicines through lead optimization and experimental research.
微豆属植物α-淀粉酶潜在抑制剂活性分子的计算鉴定
随着糖尿病患病率的上升,有必要继续研究针对一种关键生化酶的天然抗糖尿病药物。α-淀粉酶在胃肠道中参与淀粉、糖原和双糖的消化。其重要的作用和独特的性质使其成为一种有效的降糖靶点。本工作旨在利用计算机方法从微蕨的生物活性物质中寻找可能的α-淀粉酶抑制剂。在Schrödinger Maestro 12.5上筛选了50多个C. microthum化合物,随后对亲和力最高的化合物进行了MM-GBSA和ADMET(吸收、分布、代谢、排泄和毒性)研究。三水合芦丁和杨梅素-3-芦丁苷的α-淀粉酶结合亲和力较高(分别为-12.162 kcal/mol和-10.935 kcal/mol)。它们与抑制α-淀粉酶所需的氨基酸发生反应。因此,这些化合物具有α-淀粉酶抑制剂所必需的结构特征、结合亲和力和分子相互作用,通过先导物优化和实验研究可以转化为降糖药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信