Analytical Solution to Solomon Equations for Three-Spin Groupings

Daniel Canet, Hélène Python, Denis Grandclaude, Pierre Mutzenhardt
{"title":"Analytical Solution to Solomon Equations for Three-Spin Groupings","authors":"Daniel Canet,&nbsp;Hélène Python,&nbsp;Denis Grandclaude,&nbsp;Pierre Mutzenhardt","doi":"10.1006/jmra.1996.0195","DOIUrl":null,"url":null,"abstract":"<div><p>Analytical solutions are provided for a set of three simultaneous first-order differential equations which describe either cross relaxation among three groupings of spin-<span><math><mtext>1</mtext><mtext>2</mtext></math></span> nuclei (regardless of the number of spins within each grouping) or the complete longitudinal relaxation of a system of two spins-<span><math><mtext>1</mtext><mtext>2</mtext></math></span>, including CSA-dipolar interference terms (which couple the longitudinal spin order to conventional longitudinal magnetizations). In spite of their complexity, the expressions so obtained afford a time savings by a factor of 50 when used in a computer program. The efficiency of the method is illustrated by the fit of experimental data, exhibiting an unusual evolution due to both intra- and intermolecular dipolar couplings.</p></div>","PeriodicalId":16165,"journal":{"name":"Journal of Magnetic Resonance, Series A","volume":"122 2","pages":"Pages 204-208"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/jmra.1996.0195","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance, Series A","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1064185896901953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Analytical solutions are provided for a set of three simultaneous first-order differential equations which describe either cross relaxation among three groupings of spin-12 nuclei (regardless of the number of spins within each grouping) or the complete longitudinal relaxation of a system of two spins-12, including CSA-dipolar interference terms (which couple the longitudinal spin order to conventional longitudinal magnetizations). In spite of their complexity, the expressions so obtained afford a time savings by a factor of 50 when used in a computer program. The efficiency of the method is illustrated by the fit of experimental data, exhibiting an unusual evolution due to both intra- and intermolecular dipolar couplings.

三旋群Solomon方程的解析解
本文提供了一组三个同时一阶微分方程的解析解,这些方程描述了自旋为12的三组原子核之间的交叉弛豫(无论每组中有多少个自旋)或两个自旋为12的系统的完全纵向弛豫,包括csa偶极干涉项(将纵向自旋顺序与传统纵向磁化相耦合)。尽管这些表达式很复杂,但在计算机程序中使用时,可以节省50倍的时间。实验数据的拟合证明了该方法的有效性,显示出由于分子内和分子间偶极耦合而产生的不寻常的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信