Adaptive Asynchronous Parallelization of Graph Algorithms

W. Fan, Ping Lu, Wenyuan Yu, Jingbo Xu, Qiang Yin, Xiaojian Luo, Jingren Zhou, Ruochun Jin
{"title":"Adaptive Asynchronous Parallelization of Graph Algorithms","authors":"W. Fan, Ping Lu, Wenyuan Yu, Jingbo Xu, Qiang Yin, Xiaojian Luo, Jingren Zhou, Ruochun Jin","doi":"10.1145/3397491","DOIUrl":null,"url":null,"abstract":"This article proposes an Adaptive Asynchronous Parallel (AAP) model for graph computations. As opposed to Bulk Synchronous Parallel (BSP) and Asynchronous Parallel (AP) models, AAP reduces both stragglers and stale computations by dynamically adjusting relative progress of workers. We show that BSP, AP, and Stale Synchronous Parallel model (SSP) are special cases of AAP. Better yet, AAP optimizes parallel processing by adaptively switching among these models at different stages of a single execution. Moreover, employing the programming model of GRAPE, AAP aims to parallelize existing sequential algorithms based on simultaneous fixpoint computation with partial and incremental evaluation. Under a monotone condition, AAP guarantees to converge at correct answers if the sequential algorithms are correct. Furthermore, we show that AAP can optimally simulate MapReduce, PRAM, BSP, AP, and SSP. Using real-life and synthetic graphs, we experimentally verify that AAP outperforms BSP, AP, and SSP for a variety of graph computations.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"4 1","pages":"1 - 45"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

This article proposes an Adaptive Asynchronous Parallel (AAP) model for graph computations. As opposed to Bulk Synchronous Parallel (BSP) and Asynchronous Parallel (AP) models, AAP reduces both stragglers and stale computations by dynamically adjusting relative progress of workers. We show that BSP, AP, and Stale Synchronous Parallel model (SSP) are special cases of AAP. Better yet, AAP optimizes parallel processing by adaptively switching among these models at different stages of a single execution. Moreover, employing the programming model of GRAPE, AAP aims to parallelize existing sequential algorithms based on simultaneous fixpoint computation with partial and incremental evaluation. Under a monotone condition, AAP guarantees to converge at correct answers if the sequential algorithms are correct. Furthermore, we show that AAP can optimally simulate MapReduce, PRAM, BSP, AP, and SSP. Using real-life and synthetic graphs, we experimentally verify that AAP outperforms BSP, AP, and SSP for a variety of graph computations.
图算法的自适应异步并行化
本文提出了一种图计算的自适应异步并行(AAP)模型。与批量同步并行(BSP)和异步并行(AP)模型相反,AAP通过动态调整工人的相对进度来减少掉队者和过时的计算。我们证明了BSP, AP和Stale同步并行模型(SSP)是AAP的特殊情况。更好的是,AAP通过在单个执行的不同阶段自适应地在这些模型之间切换来优化并行处理。此外,AAP还利用GRAPE的规划模型,将现有的基于部分和增量计算的同时不动点计算的顺序算法并行化。在单调条件下,AAP保证在序列算法正确的情况下收敛于正确答案。此外,我们表明AAP可以最优地模拟MapReduce, PRAM, BSP, AP和SSP。使用现实生活和合成图,我们实验验证了AAP在各种图计算中优于BSP, AP和SSP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信