Coupling effects of temperature, confining pressure, and pore pressure on permeability and average pore size of Longmaxi shale

Xiaoyan Zhang, Hongsen Li, Xue Tan, Guoliang Li, Hua Jiang
{"title":"Coupling effects of temperature, confining pressure, and pore pressure on permeability and average pore size of Longmaxi shale","authors":"Xiaoyan Zhang,&nbsp;Hongsen Li,&nbsp;Xue Tan,&nbsp;Guoliang Li,&nbsp;Hua Jiang","doi":"10.1002/dug2.12047","DOIUrl":null,"url":null,"abstract":"<p>The evolution due to temperature and pressure of shale reservoir permeability affects the productivity evaluation and development decision of shale gas reservoirs, which is very important for the exploration and development of unconventional gas reservoirs. This study analyzed the coupling effects of temperature (25, 50, and 75°C), effective stress (15 and 30 MPa), and pore pressure (0.5, 2.0, 4.0, and 8.0 MPa) on the permeability of the shale sample in the Longmaxi Formation. As the temperature and pressure increased, the apparent permeability exhibited a downward trend, and the absolute permeability decreased with the rise of temperature or effective stress. An in-depth analysis of the gas slippage factors under the conditions of different temperature and pressure was conducted to evaluate the trend of the average pore width with temperature and pressure. The results were then verified by scanning electron microscopy (SEM). The results provide new insights into evaluating the permeability of the Longmaxi shale and can be used to enhance the gas recovery rate of deep shale gas reservoirs.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"2 4","pages":"359-370"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.12047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep Underground Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dug2.12047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution due to temperature and pressure of shale reservoir permeability affects the productivity evaluation and development decision of shale gas reservoirs, which is very important for the exploration and development of unconventional gas reservoirs. This study analyzed the coupling effects of temperature (25, 50, and 75°C), effective stress (15 and 30 MPa), and pore pressure (0.5, 2.0, 4.0, and 8.0 MPa) on the permeability of the shale sample in the Longmaxi Formation. As the temperature and pressure increased, the apparent permeability exhibited a downward trend, and the absolute permeability decreased with the rise of temperature or effective stress. An in-depth analysis of the gas slippage factors under the conditions of different temperature and pressure was conducted to evaluate the trend of the average pore width with temperature and pressure. The results were then verified by scanning electron microscopy (SEM). The results provide new insights into evaluating the permeability of the Longmaxi shale and can be used to enhance the gas recovery rate of deep shale gas reservoirs.

Abstract Image

温度、围压和孔隙压力对龙马溪页岩渗透率和平均孔径的耦合影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信