Edge-pancyclicity of pancake graph

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Chun-Nan Hung, Mohamad Abdallah, Jui-I Weng, Tzu-Liang Kung
{"title":"Edge-pancyclicity of pancake graph","authors":"Chun-Nan Hung, Mohamad Abdallah, Jui-I Weng, Tzu-Liang Kung","doi":"10.1080/23799927.2020.1803972","DOIUrl":null,"url":null,"abstract":"ABSTRACT Pancylicity was introduced by Bondy in 1971. A graph G with vertex set and edge set is pancyclic if it contains cycles of lengths l, for . This concept has been extended to edge-pancyclicity. If every edge of G is in a cycle of every length, G is edge-pancyclic. If every edge lies on cycles of all lengths ranging from k to , G is k-edge-pancyclic. In this paper, we prove that the n-dimensional pancake graph is 7-edge-pancyclic.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2020.1803972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Pancylicity was introduced by Bondy in 1971. A graph G with vertex set and edge set is pancyclic if it contains cycles of lengths l, for . This concept has been extended to edge-pancyclicity. If every edge of G is in a cycle of every length, G is edge-pancyclic. If every edge lies on cycles of all lengths ranging from k to , G is k-edge-pancyclic. In this paper, we prove that the n-dimensional pancake graph is 7-edge-pancyclic.
煎饼图的边环性
邦迪于1971年提出了全环性。具有顶点集和边集的图G是泛环,如果它包含长度为l的环,对于。这个概念已经扩展到边环。如果G的每条边都在一个任意长度的环中,则G是边环。如果每条边都位于从k到的所有长度的环上,则G是k边环。本文证明了n维煎饼图是7边环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信