A Tighter Relation Between Hereditary Discrepancy and Determinant Lower Bound

Haotian Jiang, Victor Reis
{"title":"A Tighter Relation Between Hereditary Discrepancy and Determinant Lower Bound","authors":"Haotian Jiang, Victor Reis","doi":"10.1137/1.9781611977066.24","DOIUrl":null,"url":null,"abstract":"In seminal work, Lovász, Spencer, and Vesztergombi [European J. Combin., 1986] proved a lower bound for the hereditary discrepancy of a matrix A ∈ Rm×n in terms of the maximum |det(B)|1/k over all k × k submatrices B of A. We show algorithmically that this determinant lower bound can be off by at most a factor of O( √ log(m) · log(n)), improving over the previous bound of O(log(mn)· √ log(n)) given by Matoušek [Proc. of the AMS, 2013]. Our result immediately implies herdisc(F1 ∪ F2) ≤ O( √ log(m) · log(n)) · max(herdisc(F1), herdisc(F2)), for any two set systems F1,F2 over [n] satisfying |F1 ∪ F2| = m. Our bounds are tight up to constants when m = O(poly(n)) due to a construction of Pálvölgyi [Discrete Comput. Geom., 2010] or the counterexample to Beck’s three permutation conjecture by Newman, Neiman and Nikolov [FOCS, 2012]. University of Washington, Seattle, USA. jhtdavid@cs.washington.edu. University of Washington, Seattle, USA. voreis@cs.washington.edu.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"61 1","pages":"308-313"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977066.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In seminal work, Lovász, Spencer, and Vesztergombi [European J. Combin., 1986] proved a lower bound for the hereditary discrepancy of a matrix A ∈ Rm×n in terms of the maximum |det(B)|1/k over all k × k submatrices B of A. We show algorithmically that this determinant lower bound can be off by at most a factor of O( √ log(m) · log(n)), improving over the previous bound of O(log(mn)· √ log(n)) given by Matoušek [Proc. of the AMS, 2013]. Our result immediately implies herdisc(F1 ∪ F2) ≤ O( √ log(m) · log(n)) · max(herdisc(F1), herdisc(F2)), for any two set systems F1,F2 over [n] satisfying |F1 ∪ F2| = m. Our bounds are tight up to constants when m = O(poly(n)) due to a construction of Pálvölgyi [Discrete Comput. Geom., 2010] or the counterexample to Beck’s three permutation conjecture by Newman, Neiman and Nikolov [FOCS, 2012]. University of Washington, Seattle, USA. jhtdavid@cs.washington.edu. University of Washington, Seattle, USA. voreis@cs.washington.edu.
遗传差异与行列式下界的密切关系
在开创性的工作中,Lovász, Spencer和Vesztergombi[欧洲J. Combin]。[j], 1986]证明了矩阵a∈Rm×n在所有k × k子矩阵B (a)上的最大|det(B)|1/k的遗传差异的下界。我们从算法上证明,这个行列式下界最多可以偏离O(√log(m)·log(n))的一个因子,比先前由Matoušek给出的O(log(mn)·√log(n))的下界有所改进[AMS的procc ., 2013]。我们的结果立即暗示herdisc(F1∪F2)≤O(√log(m)·log(n))·max(herdisc(F1), herdisc(F2)),对于任意两个集系统F1,F2 / [n]满足|F1∪F2| = m。由于Pálvölgyi[离散计算]的构造,当m = O(poly(n))时,我们的界紧于常数。几何学。或Newman、Neiman和Nikolov [FOCS, 2012]提出的Beck三置换猜想的反例。美国西雅图华盛顿大学jhtdavid@cs.washington.edu。美国西雅图华盛顿大学voreis@cs.washington.edu。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信