Web Content Extraction: a MetaAnalysis of its Past and Thoughts on its Future

Tim Weninger, Rodrigo Palácios, Valter Crescenzi, Thomas Gottron, P. Merialdo
{"title":"Web Content Extraction: a MetaAnalysis of its Past and Thoughts on its Future","authors":"Tim Weninger, Rodrigo Palácios, Valter Crescenzi, Thomas Gottron, P. Merialdo","doi":"10.1145/2897350.2897353","DOIUrl":null,"url":null,"abstract":"In this paper, we present a meta-analysis of several Web content extraction algorithms, and make recommendations for the future of content extraction on the Web. First, we find that nearly all Web content extractors do not consider a very large, and growing, portion of modernWeb pages. Second, it is well understood that wrapper induction extractors tend to break as theWeb changes; ; heuristic/ feature engineering extractors were thought to be immune to a Web site's evolution, but we find that this is not the case: heuristic content extractor performance also tends to degrade over time due to the evolution of Web site forms and practices. We conclude with recommendations for future work that address these and other findings.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"75 1","pages":"17-23"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897350.2897353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we present a meta-analysis of several Web content extraction algorithms, and make recommendations for the future of content extraction on the Web. First, we find that nearly all Web content extractors do not consider a very large, and growing, portion of modernWeb pages. Second, it is well understood that wrapper induction extractors tend to break as theWeb changes; ; heuristic/ feature engineering extractors were thought to be immune to a Web site's evolution, but we find that this is not the case: heuristic content extractor performance also tends to degrade over time due to the evolution of Web site forms and practices. We conclude with recommendations for future work that address these and other findings.
网络内容抽取:过去的元分析与未来的思考
在本文中,我们对几种Web内容提取算法进行了元分析,并对Web内容提取的未来提出了建议。首先,我们发现几乎所有的Web内容提取器都没有考虑到现代Web页面中非常大且不断增长的部分。其次,众所周知,包装器归纳提取器往往会随着web的变化而中断;;启发式/特征工程提取器被认为不受网站演变的影响,但我们发现情况并非如此:启发式内容提取器的性能也会随着网站形式和实践的演变而下降。最后,我们提出了针对这些和其他发现的未来工作的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信