Fractional spectrogram for characterizing and classifying vibrating objects in SAR images

Francisco Pérez, Balasubramaniam Santhanam, Bipesh Shrestha, W. Gerstle, M. Hayat
{"title":"Fractional spectrogram for characterizing and classifying vibrating objects in SAR images","authors":"Francisco Pérez, Balasubramaniam Santhanam, Bipesh Shrestha, W. Gerstle, M. Hayat","doi":"10.1109/IEEECONF44664.2019.9048937","DOIUrl":null,"url":null,"abstract":"A recently developed improved spectrogram that uses the discrete fractional Fourier transform (DFRFT) is used to retrieve the vibration signature that represents targets in synthetic aperture radar (SAR) data. The retrieved signature is used as input to a feature extraction process, which characterizes the vibration waveform using the DFRFT as well as histograms and statistics. The study of the performance of two classifiers, one trained with features extracted from vibration measurements and the other trained with feature extracted from simulated SAR data generated from the same vibration measurements, validates the suitability of the DFRFT-based spectrogram for retrieving and characterizing the dynamics of vibrating objects in SAR images.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"13 1","pages":"153-157"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A recently developed improved spectrogram that uses the discrete fractional Fourier transform (DFRFT) is used to retrieve the vibration signature that represents targets in synthetic aperture radar (SAR) data. The retrieved signature is used as input to a feature extraction process, which characterizes the vibration waveform using the DFRFT as well as histograms and statistics. The study of the performance of two classifiers, one trained with features extracted from vibration measurements and the other trained with feature extracted from simulated SAR data generated from the same vibration measurements, validates the suitability of the DFRFT-based spectrogram for retrieving and characterizing the dynamics of vibrating objects in SAR images.
用于SAR图像中振动目标表征和分类的分数谱图
本文提出了一种基于离散分数傅里叶变换的改进谱图,用于提取合成孔径雷达(SAR)数据中代表目标的振动特征。检索到的特征被用作特征提取过程的输入,该过程使用DFRFT以及直方图和统计来表征振动波形。研究了两种分类器的性能,一种分类器使用从振动测量中提取的特征进行训练,另一种分类器使用从相同振动测量产生的模拟SAR数据中提取的特征进行训练,验证了基于dfrft的频谱图用于检索和表征SAR图像中振动物体的动态特性的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信