Exact solutions of the 2D Dunkl–Klein–Gordon equation: The Coulomb potential and the Klein–Gordon oscillator

R. D. Mota, D. Ojeda-Guill'en, M. Salazar-Ram'irez, V. Granados
{"title":"Exact solutions of the 2D Dunkl–Klein–Gordon equation: The Coulomb potential and the Klein–Gordon oscillator","authors":"R. D. Mota, D. Ojeda-Guill'en, M. Salazar-Ram'irez, V. Granados","doi":"10.1142/S0217732321501716","DOIUrl":null,"url":null,"abstract":"In this paper, we begin from the Klein-Gordon ($KG$) equation in $2D$ and change the standard partial derivatives by the Dunkl derivatives to obtain the Dunkl-Klein-Gordon ($DKG$) equation. We show that the generalization with Dunkl derivative of the $z$-component of the angular momentum is what allows the separation of variables of the $DKG$ equation. Then, we show that $DKG$ equations for the $2D$ Coulomb potential and the Klein-Gordon oscillator are exactly solvable. For each of the problems, we find the energy spectrum from an algebraic point of view by introducing suitable sets of operators which close the $su(1,1)$ algebra and use the unitary theory of representations. Also, we find analytically the energy spectrum and eigenfunctions of the $DKG$ equations for both problems. Finally, we show that when the parameters of the Dunkl derivative vanish, our results are suitably reduced to those reported in the literature for these $2D$ problems.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217732321501716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we begin from the Klein-Gordon ($KG$) equation in $2D$ and change the standard partial derivatives by the Dunkl derivatives to obtain the Dunkl-Klein-Gordon ($DKG$) equation. We show that the generalization with Dunkl derivative of the $z$-component of the angular momentum is what allows the separation of variables of the $DKG$ equation. Then, we show that $DKG$ equations for the $2D$ Coulomb potential and the Klein-Gordon oscillator are exactly solvable. For each of the problems, we find the energy spectrum from an algebraic point of view by introducing suitable sets of operators which close the $su(1,1)$ algebra and use the unitary theory of representations. Also, we find analytically the energy spectrum and eigenfunctions of the $DKG$ equations for both problems. Finally, we show that when the parameters of the Dunkl derivative vanish, our results are suitably reduced to those reported in the literature for these $2D$ problems.
二维Dunkl-Klein-Gordon方程的精确解:库仑势和Klein-Gordon振子
本文从二维方程中的Klein-Gordon ($KG$)方程出发,用Dunkl导数变换标准偏导数,得到了Dunkl-Klein-Gordon ($DKG$)方程。我们证明了角动量的z分量的Dunkl导数的一般化是允许分离DKG方程变量的原因。然后,我们证明了二维库仑势和克莱因-戈登振子的DKG方程是完全可解的。对于每一个问题,我们从代数的角度,通过引入合适的算子集来封闭$su(1,1)$代数,并使用幺正表示理论来找到能谱。同时,我们解析地得到了这两个问题的DKG方程的能谱和特征函数。最后,我们证明了当Dunkl导数的参数消失时,我们的结果可以适当地简化为这些二维问题的文献报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信