Kippenhahn's Theorem for Joint Numerical Ranges and Quantum States

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
D. Plaumann, Rainer Sinn, S. Weis
{"title":"Kippenhahn's Theorem for Joint Numerical Ranges and Quantum States","authors":"D. Plaumann, Rainer Sinn, S. Weis","doi":"10.1137/19M1286578","DOIUrl":null,"url":null,"abstract":"Kippenhahn's Theorem asserts that the numerical range of a matrix is the convex hull of a certain algebraic curve. Here, we show that the joint numerical range of finitely many hermitian matrices is similarly the convex hull of a semi-algebraic set. We discuss an analogous statement regarding the dual convex cone to a hyperbolicity cone and prove that the class of convex bases of these dual cones is closed under linear operations. The result offers a new geometric method to analyze quantum states.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":"110 1","pages":"86-113"},"PeriodicalIF":1.6000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/19M1286578","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

Abstract

Kippenhahn's Theorem asserts that the numerical range of a matrix is the convex hull of a certain algebraic curve. Here, we show that the joint numerical range of finitely many hermitian matrices is similarly the convex hull of a semi-algebraic set. We discuss an analogous statement regarding the dual convex cone to a hyperbolicity cone and prove that the class of convex bases of these dual cones is closed under linear operations. The result offers a new geometric method to analyze quantum states.
联合数值范围和量子态的Kippenhahn定理
Kippenhahn定理断言矩阵的数值范围是某代数曲线的凸包。在这里,我们证明了有限多个厄米矩阵的联合数值范围类似于半代数集的凸包。讨论了对偶凸锥与双曲锥的一个类似命题,并证明了对偶凸锥的凸基类在线性运算下是闭的。该结果为量子态分析提供了一种新的几何方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信