{"title":"Kippenhahn's Theorem for Joint Numerical Ranges and Quantum States","authors":"D. Plaumann, Rainer Sinn, S. Weis","doi":"10.1137/19M1286578","DOIUrl":null,"url":null,"abstract":"Kippenhahn's Theorem asserts that the numerical range of a matrix is the convex hull of a certain algebraic curve. Here, we show that the joint numerical range of finitely many hermitian matrices is similarly the convex hull of a semi-algebraic set. We discuss an analogous statement regarding the dual convex cone to a hyperbolicity cone and prove that the class of convex bases of these dual cones is closed under linear operations. The result offers a new geometric method to analyze quantum states.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":"110 1","pages":"86-113"},"PeriodicalIF":1.6000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/19M1286578","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9
Abstract
Kippenhahn's Theorem asserts that the numerical range of a matrix is the convex hull of a certain algebraic curve. Here, we show that the joint numerical range of finitely many hermitian matrices is similarly the convex hull of a semi-algebraic set. We discuss an analogous statement regarding the dual convex cone to a hyperbolicity cone and prove that the class of convex bases of these dual cones is closed under linear operations. The result offers a new geometric method to analyze quantum states.