{"title":"The Geology and 3D Modelling of the Cliff Head Oil Field, Australia","authors":"Y. Eshmawi","doi":"10.2118/194954-MS","DOIUrl":null,"url":null,"abstract":"\n The Cliff Head is one of the most significant discoveries in the offshore Northern Perth Basin. Hence, understanding the structure and geology of the field is essential to further evaluate the offshore region in the basin. Two structural models were developed with the objective to achieve a better understanding of this field. The first model is focused on the Permian and older strata, while the second model is for the overburden. In addition, reservoir properties models (e.g. porosity model and water saturation model) were developed to better understand the reservoir facies and hydrocarbon distribution. Examination of the structural models has shown that there are two main sets of faults within the Cliff Head area, which can be categorized into the following: the deep Permian faults that are truncated against the Late Permian unconformity, and younger Cretaceous faults that were developed during the Early Cretaceous rifting. It has also shown that the oil accumulation within the field is structurally trapped within Permian aged set of horsts and is mainly reservoired within the Irwin River Coal Measures. The secondary target (e.g. the underlying High Cliff Sandstone) is mostly beneath the regional oil-water contact of −1257.8 m TVDss, except in the highest structural point in the field, where Cliff Head-6 was drilled. The Irwin River Coal Measures in the study area contained four high resolution depositional sequences that displayed a finingupward pattern as depicted by the Gamma Ray log response and are interpreted to have mainly deposited in a fluvial depositional system. The High Cliff Sandstone, in contrast, contained two high resolution depositional sequences that displayed a coarsening upward sequences as supported by Gamma Ray log response and were interpreted to have mainly deposited in marginal marine settings. Reservoir properties modeling was also conducted utilizing the 3D models, where a 3D porosity model was calculated and shows that the Irwin River Coal Measures, in general, exhibit higher porosity distribution than the underlying High Cliff Sandstone, even though the later has coarser and more laterally extensive sand sheets. This is probably attributed to diagenetic porosity reduction within the High Cliff Sandstone caused by the formation waters. The calculated 3D water saturation model also confirms the presence of a single regional oil-water contact within the field and hence, reservoir heterogeneities and fault seal capacities did not affect the hydrocarbon distribution within the field. Finally, all the calculated models (e.g. lithofacies model, porosity model, and water saturation model) were integrated to estimate the recoverable hydrocarbons in place, where the Cliff Head is estimated to contain a total of 15.2 million barrels.","PeriodicalId":11321,"journal":{"name":"Day 3 Wed, March 20, 2019","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, March 20, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194954-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Cliff Head is one of the most significant discoveries in the offshore Northern Perth Basin. Hence, understanding the structure and geology of the field is essential to further evaluate the offshore region in the basin. Two structural models were developed with the objective to achieve a better understanding of this field. The first model is focused on the Permian and older strata, while the second model is for the overburden. In addition, reservoir properties models (e.g. porosity model and water saturation model) were developed to better understand the reservoir facies and hydrocarbon distribution. Examination of the structural models has shown that there are two main sets of faults within the Cliff Head area, which can be categorized into the following: the deep Permian faults that are truncated against the Late Permian unconformity, and younger Cretaceous faults that were developed during the Early Cretaceous rifting. It has also shown that the oil accumulation within the field is structurally trapped within Permian aged set of horsts and is mainly reservoired within the Irwin River Coal Measures. The secondary target (e.g. the underlying High Cliff Sandstone) is mostly beneath the regional oil-water contact of −1257.8 m TVDss, except in the highest structural point in the field, where Cliff Head-6 was drilled. The Irwin River Coal Measures in the study area contained four high resolution depositional sequences that displayed a finingupward pattern as depicted by the Gamma Ray log response and are interpreted to have mainly deposited in a fluvial depositional system. The High Cliff Sandstone, in contrast, contained two high resolution depositional sequences that displayed a coarsening upward sequences as supported by Gamma Ray log response and were interpreted to have mainly deposited in marginal marine settings. Reservoir properties modeling was also conducted utilizing the 3D models, where a 3D porosity model was calculated and shows that the Irwin River Coal Measures, in general, exhibit higher porosity distribution than the underlying High Cliff Sandstone, even though the later has coarser and more laterally extensive sand sheets. This is probably attributed to diagenetic porosity reduction within the High Cliff Sandstone caused by the formation waters. The calculated 3D water saturation model also confirms the presence of a single regional oil-water contact within the field and hence, reservoir heterogeneities and fault seal capacities did not affect the hydrocarbon distribution within the field. Finally, all the calculated models (e.g. lithofacies model, porosity model, and water saturation model) were integrated to estimate the recoverable hydrocarbons in place, where the Cliff Head is estimated to contain a total of 15.2 million barrels.