Multi-Watt Multi-Pass Amplification in a 42-mm-Long Yb:LuLiF4 Single Crystal Fiber Grown by the Micro-Pulling-Down Method

F. Pirzio, S. Jun, S. Tacchini, G. Piccinno, A. Di Lieto, M. Tonelli, A. Agnesi
{"title":"Multi-Watt Multi-Pass Amplification in a 42-mm-Long Yb:LuLiF4 Single Crystal Fiber Grown by the Micro-Pulling-Down Method","authors":"F. Pirzio, S. Jun, S. Tacchini, G. Piccinno, A. Di Lieto, M. Tonelli, A. Agnesi","doi":"10.1109/CLEOE-EQEC.2019.8873335","DOIUrl":null,"url":null,"abstract":"By exploiting a more favourable surface/volume ratio for heat exchange and pump absorption distribution over significantly increased length, single crystal fibers (SCF) are considered promising candidate as a replacement for bulk crystals in high-power laser systems. So far, micro-pulling down (μ-PD) technique was successfully employed mainly in growing cubic crystals, most impressive results being obtained with Yb:YAG [1]. Birefringent sCf are also attractive, as they provide a quite straightforward means of avoiding beam quality degradation at high thermal load due to depolarization. The first Nd:YLF laser based on fiber crystals was reported in [2]. However, from the perspective of high-power applications, Ytterbium-doped materials are definitely more interesting, owing to the much smaller quantum defect and absence of excited-state absorption.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"1 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8873335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By exploiting a more favourable surface/volume ratio for heat exchange and pump absorption distribution over significantly increased length, single crystal fibers (SCF) are considered promising candidate as a replacement for bulk crystals in high-power laser systems. So far, micro-pulling down (μ-PD) technique was successfully employed mainly in growing cubic crystals, most impressive results being obtained with Yb:YAG [1]. Birefringent sCf are also attractive, as they provide a quite straightforward means of avoiding beam quality degradation at high thermal load due to depolarization. The first Nd:YLF laser based on fiber crystals was reported in [2]. However, from the perspective of high-power applications, Ytterbium-doped materials are definitely more interesting, owing to the much smaller quantum defect and absence of excited-state absorption.
微拉下法生长的42毫米长Yb:LuLiF4单晶光纤的多瓦多通放大
单晶光纤(SCF)利用更有利的表面/体积比在显著增加的长度上进行热交换和泵浦吸收分布,被认为是高功率激光系统中块状晶体的替代品。迄今为止,微拉下(μ-PD)技术主要成功地应用于立方晶体的生长,最令人印象深刻的结果是Yb:YAG[1]。双折射sCf也很有吸引力,因为它们提供了一种非常直接的方法,避免在高热负荷下由于去极化而导致的光束质量下降。2010年首次报道了基于光纤晶体的Nd:YLF激光器。然而,从大功率应用的角度来看,掺镱材料肯定更有趣,因为量子缺陷小得多,没有激发态吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信