{"title":"Non-existence of patterns and gradient estimates in semilinear elliptic equations with Neumann boundary conditions","authors":"Samuel Nordmann","doi":"10.1016/j.anihpc.2021.02.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We call pattern any non-constant solution of a semilinear </span>elliptic equation<span> with Neumann boundary conditions. A classical theorem of Casten, Holland </span></span><span>[20]</span> and Matano <span>[50]</span><span> states that stable patterns do not exist in convex domains. In this article, we show that the assumptions of </span><em>convexity of the domain</em> and <em>stability of the pattern</em> in this theorem can be relaxed in several directions. In particular, we propose a general criterion for the non-existence of patterns, dealing with possibly non-convex domains and unstable patterns. Our results unfold the interplay between the geometry of the domain, the stability of patterns, and the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the nonlinearity.</p><p>In addition, we establish several gradient estimates for the patterns of <span>(1)</span>. We prove a general nonlinear Cacciopoli inequality (or an inverse Poincaré inequality), stating that the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm of the gradient of a solution is controlled by the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm of <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span>, with a constant that only depends on the domain. This inequality holds for non-homogeneous equations. We also give several flatness estimates.</p><p>Our approach relies on the introduction of what we call the <em>Robin-curvature Laplacian</em>. This operator is intrinsic to the domain and contains much information on how the geometry of the domain affects the shape of the solutions.</p><p><span>Finally, we extend our results to unbounded domains. It allows us to improve the results of our previous paper </span><span>[54]</span><span> and to extend some results on De Giorgi's conjecture to a larger class of domains.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.02.002","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144921000196","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
We call pattern any non-constant solution of a semilinear elliptic equation with Neumann boundary conditions. A classical theorem of Casten, Holland [20] and Matano [50] states that stable patterns do not exist in convex domains. In this article, we show that the assumptions of convexity of the domain and stability of the pattern in this theorem can be relaxed in several directions. In particular, we propose a general criterion for the non-existence of patterns, dealing with possibly non-convex domains and unstable patterns. Our results unfold the interplay between the geometry of the domain, the stability of patterns, and the norm of the nonlinearity.
In addition, we establish several gradient estimates for the patterns of (1). We prove a general nonlinear Cacciopoli inequality (or an inverse Poincaré inequality), stating that the -norm of the gradient of a solution is controlled by the -norm of , with a constant that only depends on the domain. This inequality holds for non-homogeneous equations. We also give several flatness estimates.
Our approach relies on the introduction of what we call the Robin-curvature Laplacian. This operator is intrinsic to the domain and contains much information on how the geometry of the domain affects the shape of the solutions.
Finally, we extend our results to unbounded domains. It allows us to improve the results of our previous paper [54] and to extend some results on De Giorgi's conjecture to a larger class of domains.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.