Subadditive inequalities for operators

H. Moradi, Z. Heydarbeygi, M. Sababheh
{"title":"Subadditive inequalities for operators","authors":"H. Moradi, Z. Heydarbeygi, M. Sababheh","doi":"10.7153/mia-2020-23-24","DOIUrl":null,"url":null,"abstract":"In this article, we present a new subadditivity behavior of convex and concave functions, when applied to Hilbert space operators. For example, under suitable assumptions on the spectrum of the positive operators $A$ and $B$, we prove that \\[{{2}^{1-r}}{{\\left( A+B \\right)}^{r}}\\le {{A}^{r}}+{{B}^{r}}\\quad\\text{ for }r>1\\text{ and }r<0,\\] and \\[{{A}^{r}}+{{B}^{r}}\\le {{2}^{1-r}}{{\\left( A+B \\right)}^{r}}\\quad\\text{ for }r\\in \\left[ 0,1 \\right].\\] These results provide considerable generalization of earlier results by Aujla and Silva. \nFurther, we present several extensions of the subadditivity idea initiated by Ando and Zhan, then extended by Bourin and Uchiyama.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/mia-2020-23-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this article, we present a new subadditivity behavior of convex and concave functions, when applied to Hilbert space operators. For example, under suitable assumptions on the spectrum of the positive operators $A$ and $B$, we prove that \[{{2}^{1-r}}{{\left( A+B \right)}^{r}}\le {{A}^{r}}+{{B}^{r}}\quad\text{ for }r>1\text{ and }r<0,\] and \[{{A}^{r}}+{{B}^{r}}\le {{2}^{1-r}}{{\left( A+B \right)}^{r}}\quad\text{ for }r\in \left[ 0,1 \right].\] These results provide considerable generalization of earlier results by Aujla and Silva. Further, we present several extensions of the subadditivity idea initiated by Ando and Zhan, then extended by Bourin and Uchiyama.
算子的次加性不等式
本文在Hilbert空间算子上,给出了凸、凹函数的一个新的次可加性。例如,在对正算子$A$和$B$的谱的适当假设下,我们证明了\[{{2}^{1-r}}{{\left( A+B \right)}^{r}}\le {{A}^{r}}+{{B}^{r}}\quad\text{ for }r>1\text{ and }r<0,\]和\[{{A}^{r}}+{{B}^{r}}\le {{2}^{1-r}}{{\left( A+B \right)}^{r}}\quad\text{ for }r\in \left[ 0,1 \right].\]。这些结果对Aujla和Silva先前的结果提供了相当大的推广。此外,我们提出了由Ando和Zhan提出的子可加性思想的几个扩展,然后由Bourin和Uchiyama扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信