{"title":"Mining And-Or Graphs for Graph Matching and Object Discovery","authors":"Quanshi Zhang, Y. Wu, Song-Chun Zhu","doi":"10.1109/ICCV.2015.15","DOIUrl":null,"url":null,"abstract":"This paper reformulates the theory of graph mining on the technical basis of graph matching, and extends its scope of applications to computer vision. Given a set of attributed relational graphs (ARGs), we propose to use a hierarchical And-Or Graph (AoG) to model the pattern of maximal-size common subgraphs embedded in the ARGs, and we develop a general method to mine the AoG model from the unlabeled ARGs. This method provides a general solution to the problem of mining hierarchical models from unannotated visual data without exhaustive search of objects. We apply our method to RGB/RGB-D images and videos to demonstrate its generality and the wide range of applicability. The code will be available at https://sites.google.com/site/quanshizhang/mining-and-or-graphs.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"44 1","pages":"55-63"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
This paper reformulates the theory of graph mining on the technical basis of graph matching, and extends its scope of applications to computer vision. Given a set of attributed relational graphs (ARGs), we propose to use a hierarchical And-Or Graph (AoG) to model the pattern of maximal-size common subgraphs embedded in the ARGs, and we develop a general method to mine the AoG model from the unlabeled ARGs. This method provides a general solution to the problem of mining hierarchical models from unannotated visual data without exhaustive search of objects. We apply our method to RGB/RGB-D images and videos to demonstrate its generality and the wide range of applicability. The code will be available at https://sites.google.com/site/quanshizhang/mining-and-or-graphs.