{"title":"The impact of body position on measurement of equine lumbar and hindquarter volume using 3-dimensional scans","authors":"A. Borer-Matsui, C. Donnelly, S. Valberg","doi":"10.3920/cep220021","DOIUrl":null,"url":null,"abstract":"Well-developed musculature is important for performance yet difficult to quantify. Recently, we validated infrared 3-dimensional (3-D) photonic scanning as an accurate measure of body volume and proxy for regional muscle mass in horses. Our current objective was to determine the impact of body position on measures of lumbar (LV) and hindquarter (HQV) volume. Anatomic markers were placed on 8 horses, positioned at: (1) four hooves square, (2) neck turned ~25°, (3) head raised mean 17 cm, (4) one hind hoof (HH) forward 14±5 cm, (5) a front and contralateral HH ~15 cm all offset, (6) one HH resting. A handheld Occipital Structure Sensor photonic scanner, iPad, Skanect and Materialise 3-Matic programs captured LV and HQV. Measured LV and HQV for whole, same and opposite-side with altered head positions and whole LV and HQV with altered HH positions were compared to volume standing square using repeated measures ANOVA. The volumes of the opposite-side or same-side with altered HH positions were compared to the corresponding side when square using a paired t test with multiple test correction (P<0.017). Head elevated negatively impacted measured left LV (-10% difference, P=0.1) compared to square, however, differences were not significant. Head turned did not impact measured LV. Resting HH significantly increased measured whole (18%, P=0.04) and same-side LV (49%, P=0.001) versus square but not the opposite-side LV. One HH forward (whole 16%, P=0.02; same-side 19%, P=0.01) or all offset (whole 14%, P=0.002; same-side 27%, P=0.0001) significantly increased measured whole or same-side LV versus square. Measured HQV was not impacted by head elevated or limb position but was 2% higher on the opposite-side of the turned head (P=0.01). We conclude that alterations in body position have minimal impact on measured HQV, whereas accurate assessment of LV requires horses stand squarely.","PeriodicalId":10709,"journal":{"name":"Comparative Exercise Physiology","volume":"84 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Exercise Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3920/cep220021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Well-developed musculature is important for performance yet difficult to quantify. Recently, we validated infrared 3-dimensional (3-D) photonic scanning as an accurate measure of body volume and proxy for regional muscle mass in horses. Our current objective was to determine the impact of body position on measures of lumbar (LV) and hindquarter (HQV) volume. Anatomic markers were placed on 8 horses, positioned at: (1) four hooves square, (2) neck turned ~25°, (3) head raised mean 17 cm, (4) one hind hoof (HH) forward 14±5 cm, (5) a front and contralateral HH ~15 cm all offset, (6) one HH resting. A handheld Occipital Structure Sensor photonic scanner, iPad, Skanect and Materialise 3-Matic programs captured LV and HQV. Measured LV and HQV for whole, same and opposite-side with altered head positions and whole LV and HQV with altered HH positions were compared to volume standing square using repeated measures ANOVA. The volumes of the opposite-side or same-side with altered HH positions were compared to the corresponding side when square using a paired t test with multiple test correction (P<0.017). Head elevated negatively impacted measured left LV (-10% difference, P=0.1) compared to square, however, differences were not significant. Head turned did not impact measured LV. Resting HH significantly increased measured whole (18%, P=0.04) and same-side LV (49%, P=0.001) versus square but not the opposite-side LV. One HH forward (whole 16%, P=0.02; same-side 19%, P=0.01) or all offset (whole 14%, P=0.002; same-side 27%, P=0.0001) significantly increased measured whole or same-side LV versus square. Measured HQV was not impacted by head elevated or limb position but was 2% higher on the opposite-side of the turned head (P=0.01). We conclude that alterations in body position have minimal impact on measured HQV, whereas accurate assessment of LV requires horses stand squarely.
期刊介绍:
''Comparative Exercise Physiology'' is the only international peer-reviewed scientific journal specifically dealing with the latest research in exercise physiology across all animal species, including humans. The major objective of the journal is to use this comparative approach to better understand the physiological, nutritional, and biochemical parameters that determine levels of performance and athletic achievement. Core subjects include exercise physiology, biomechanics, gait (including the effect of riders in equestrian sport), nutrition and biochemistry, injury and rehabilitation, psychology and behaviour, and breeding and genetics. This comparative and integrative approach to exercise science ultimately highlights the similarities as well as the differences between humans, horses, dogs, and other athletic or non-athletic species during exercise. The result is a unique forum for new information that serves as a resource for all who want to understand the physiological challenges with exercise.