Semantic Segmentation under Severe Imaging Conditions

Hoda Imam, Bassem A. Abdullah, H. A. E. Munim
{"title":"Semantic Segmentation under Severe Imaging Conditions","authors":"Hoda Imam, Bassem A. Abdullah, H. A. E. Munim","doi":"10.1109/DICTA47822.2019.8945923","DOIUrl":null,"url":null,"abstract":"Many challenges face semantic understanding of urban street scenes. Two of the most important challenges are foggy and blurred scenes. In this work we make a comparison between two of the most powerful methods in semantic segmentation. These techniques are DeepLabv3+ and PSPNet which achieve the highest mIoU and approximately close to each other on the Cityscapes dataset testing using both fine and coarse data for training. DeebLabv3+ and PSPNet achieved an accuracy of 82.1 % and 81.2% on Cityscapes test set respectively. Our experimental results discuss the performance of these methods on two of the hardest challenges in semantic segmentation which are foggy and blurred scenes.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"303 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many challenges face semantic understanding of urban street scenes. Two of the most important challenges are foggy and blurred scenes. In this work we make a comparison between two of the most powerful methods in semantic segmentation. These techniques are DeepLabv3+ and PSPNet which achieve the highest mIoU and approximately close to each other on the Cityscapes dataset testing using both fine and coarse data for training. DeebLabv3+ and PSPNet achieved an accuracy of 82.1 % and 81.2% on Cityscapes test set respectively. Our experimental results discuss the performance of these methods on two of the hardest challenges in semantic segmentation which are foggy and blurred scenes.
严重成像条件下的语义分割
城市街景的语义理解面临许多挑战。两个最重要的挑战是雾蒙蒙和模糊的场景。在这项工作中,我们比较了两种最强大的语义分割方法。这些技术是DeepLabv3+和PSPNet,它们实现了最高的mIoU,并且在使用精细和粗糙数据进行训练的cityscape数据集测试中彼此近似接近。DeebLabv3+和PSPNet在cityscape测试集上的准确率分别达到82.1%和81.2%。我们的实验结果讨论了这些方法在语义分割中两个最困难的挑战,即模糊和模糊场景的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信