Predictive Analysis in Network Function Virtualization

Zhijing Li, Zihui Ge, A. Mahimkar, Jia Wang, Ben Y. Zhao, Haitao Zheng, Joanne Emmons, L. Ogden
{"title":"Predictive Analysis in Network Function Virtualization","authors":"Zhijing Li, Zihui Ge, A. Mahimkar, Jia Wang, Ben Y. Zhao, Haitao Zheng, Joanne Emmons, L. Ogden","doi":"10.1145/3278532.3278547","DOIUrl":null,"url":null,"abstract":"Recent deployments of Network Function Virtualization (NFV) architectures have gained tremendous traction. While virtualization introduces benefits such as lower costs and easier deployment of network functions, it adds additional layers that reduce transparency into faults at lower layers. To improve fault analysis and prediction for virtualized network functions (VNF), we envision a runtime predictive analysis system that runs in parallel with existing reactive monitoring systems to provide network operators timely warnings against faulty conditions. In this paper, we propose a deep learning based approach to reliably identify anomaly events from NFV system logs, and perform an empirical study using 18 consecutive months in 2016--2018 of real-world deployment data on virtualized provider edge routers. Our deep learning models, combined with customization and adaptation mechanisms, can successfully identify anomalous conditions that correlate with network trouble tickets. Analyzing these anomalies can help operators to optimize trouble ticket generation and processing rules in order to enable fast, or even proactive actions against faulty conditions.","PeriodicalId":20640,"journal":{"name":"Proceedings of the Internet Measurement Conference 2018","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Internet Measurement Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3278532.3278547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Recent deployments of Network Function Virtualization (NFV) architectures have gained tremendous traction. While virtualization introduces benefits such as lower costs and easier deployment of network functions, it adds additional layers that reduce transparency into faults at lower layers. To improve fault analysis and prediction for virtualized network functions (VNF), we envision a runtime predictive analysis system that runs in parallel with existing reactive monitoring systems to provide network operators timely warnings against faulty conditions. In this paper, we propose a deep learning based approach to reliably identify anomaly events from NFV system logs, and perform an empirical study using 18 consecutive months in 2016--2018 of real-world deployment data on virtualized provider edge routers. Our deep learning models, combined with customization and adaptation mechanisms, can successfully identify anomalous conditions that correlate with network trouble tickets. Analyzing these anomalies can help operators to optimize trouble ticket generation and processing rules in order to enable fast, or even proactive actions against faulty conditions.
网络功能虚拟化中的预测分析
最近网络功能虚拟化(NFV)架构的部署获得了巨大的吸引力。虽然虚拟化带来了诸如降低成本和更容易部署网络功能等好处,但它增加了额外的层,从而减少了对较低层故障的透明度。为了改进虚拟网络功能(VNF)的故障分析和预测,我们设想了一个运行时预测分析系统,该系统与现有的被动监测系统并行运行,为网络运营商提供故障情况的及时警告。在本文中,我们提出了一种基于深度学习的方法来从NFV系统日志中可靠地识别异常事件,并使用2016年至2018年虚拟化提供商边缘路由器上连续18个月的实际部署数据进行了实证研究。我们的深度学习模型,结合定制和适应机制,可以成功识别与网络故障单相关的异常情况。分析这些异常可以帮助作业者优化故障单的生成和处理规则,以便针对故障情况采取快速甚至主动的措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信