ISAR Imaging Based on Homotopy Re-Weighted ℓ1-Norm Minimization

Yuexin Gao, Xinyu Zhang, M. Xing, Jixiang Fu, Zi-jing Zhang, Ying Wang
{"title":"ISAR Imaging Based on Homotopy Re-Weighted ℓ1-Norm Minimization","authors":"Yuexin Gao, Xinyu Zhang, M. Xing, Jixiang Fu, Zi-jing Zhang, Ying Wang","doi":"10.1109/IGARSS.2019.8897885","DOIUrl":null,"url":null,"abstract":"A suitable regularization parameter plays an important role in sparse ISAR imaging algorithms. With a proper regularization parameter, the quality of ISAR images improves. In this paper, the Homotopy re-weighted ℓ1-norm minimization is applied to ISAR imaging. This method is able to choose the accurate regularization parameter for each point in ISAR image with high efficiency. As a result, the imaging results processed by this method contain more details of the target and less artificial points. Both simulated and real data experiments validate the feasibility of the proposed method.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"68 1","pages":"1204-1207"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8897885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A suitable regularization parameter plays an important role in sparse ISAR imaging algorithms. With a proper regularization parameter, the quality of ISAR images improves. In this paper, the Homotopy re-weighted ℓ1-norm minimization is applied to ISAR imaging. This method is able to choose the accurate regularization parameter for each point in ISAR image with high efficiency. As a result, the imaging results processed by this method contain more details of the target and less artificial points. Both simulated and real data experiments validate the feasibility of the proposed method.
基于同伦重加权1-范数最小化的ISAR成像
在稀疏ISAR成像算法中,合适的正则化参数至关重要。适当的正则化参数可以提高ISAR图像的质量。本文将同伦重加权1范数最小化方法应用于ISAR成像。该方法能够高效地为ISAR图像中的每个点选择精确的正则化参数。因此,该方法处理的成像结果包含了更多的目标细节和更少的人工点。仿真实验和实际数据实验验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信