Sheng Zhang, Adrian Tang, Zhewei Jiang, S. Sethumadhavan, Mingoo Seok
{"title":"Blacklist Core: Machine-Learning Based Dynamic Operating-Performance-Point Blacklisting for Mitigating Power-Management Security Attacks","authors":"Sheng Zhang, Adrian Tang, Zhewei Jiang, S. Sethumadhavan, Mingoo Seok","doi":"10.1145/3218603.3218624","DOIUrl":null,"url":null,"abstract":"Most modern computing devices make available fine-grained control of operating frequency and voltage for power management. These interfaces, as demonstrated by recent attacks, open up a new class of software fault injection attacks that compromise security on commodity devices. CLKSCREW, a recently-published attack that stretches the frequency of devices beyond their operational limits to induce faults, is one such attack. Statically and permanently limiting frequency and voltage modulation space, i.e., guard-banding, could mitigate such attacks but it incurs large performance degradation and long testing time. Instead, in this paper, we propose a run-time technique which dynamically blacklists unsafe operating performance points using a neural-net model. The model is first trained offline in the design time and then subsequently adjusted at run-time by inspecting a selected set of features such as power management control registers, timing-error signals, and core temperature. We designed the algorithm and hardware, titled a BlackList (BL) core, which is capable of detecting and mitigating such power management-based security attack at high accuracy. The BL core incurs a reasonably small amount of overhead in power, delay, and area.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Most modern computing devices make available fine-grained control of operating frequency and voltage for power management. These interfaces, as demonstrated by recent attacks, open up a new class of software fault injection attacks that compromise security on commodity devices. CLKSCREW, a recently-published attack that stretches the frequency of devices beyond their operational limits to induce faults, is one such attack. Statically and permanently limiting frequency and voltage modulation space, i.e., guard-banding, could mitigate such attacks but it incurs large performance degradation and long testing time. Instead, in this paper, we propose a run-time technique which dynamically blacklists unsafe operating performance points using a neural-net model. The model is first trained offline in the design time and then subsequently adjusted at run-time by inspecting a selected set of features such as power management control registers, timing-error signals, and core temperature. We designed the algorithm and hardware, titled a BlackList (BL) core, which is capable of detecting and mitigating such power management-based security attack at high accuracy. The BL core incurs a reasonably small amount of overhead in power, delay, and area.